answersLogoWhite

0

The expression for KE is 1/2 m v2

As v is doubled then KE will be 1/2 m (22) V2

So it becomes 4 times the original.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

What happens to an object's kinetic energy when its speed doubles?

When an object's speed doubles, its kinetic energy increases by a factor of four. This relationship is due to the kinetic energy equation, which is proportional to the square of the velocity. Therefore, the object will have four times more kinetic energy when its speed doubles.


How the kinetic energy of an object changes when the speed of the object doubles?

Look at the formula for the kinetic energy of an object: KE = 1/2 M V2Did you notice that " V2 " ? That means the KE is proportional to the squareof the object's velocity.So if the object's speed doubles, its KE increases by (2)2 = a factor of 4.


If the speed of a moving object doubles then what else doubles?

If the speed of a moving object doubles, the kinetic energy of the object also doubles. This is because kinetic energy is directly proportional to the square of the speed of an object (KE = 0.5 * m * v^2), so if the speed doubles, the kinetic energy will quadruple.


If the speed of an object increases its kinetic energy does what?

If the speed of an object increases, its kinetic energy also increases. Kinetic energy is directly proportional to the square of the object's speed, so a small increase in speed can result in a larger increase in kinetic energy.


When the speed of an object doubles does its kinetic energy double too?

Answer: Speed is distance over time (V=x/t). The kinetic energy of an object is calculated from the type KE=1/2mass by Speed squared. From these two formulas we can see that if the speed doubles, then the kinetic energy of an object becomes four times larger. Lets see an example: A car has a speed of 4 metres per second. Its kinetic energy is KE=1/2mass by speed squared, so its KE=1/2mass by 16 (since the square of 4 is 16). If the speed doubles and the car does 8 metres per second, its kinetic energy is: KE=1/2mass by 64 (since 8 squared gives us 64). If we divide 64/16 its 4. So we see that when speed doubles, the Kinetic Energy of an object becomes four times larger.

Related Questions

If the of an object doubles Its kinetic energy doubles?

If the speed of an object doubles, its kinetic energy quadruples. This is because velocity is squared in the formula for kinetic energy.


What happens to an object's kinetic energy when its speed doubles?

When an object's speed doubles, its kinetic energy increases by a factor of four. This relationship is due to the kinetic energy equation, which is proportional to the square of the velocity. Therefore, the object will have four times more kinetic energy when its speed doubles.


If the speed of an object doubles the kinetic energy of the object?

At twice the speed, the kinetic energy will be four times greater.


How the kinetic energy of an object changes when the speed of the object doubles?

Look at the formula for the kinetic energy of an object: KE = 1/2 M V2Did you notice that " V2 " ? That means the KE is proportional to the squareof the object's velocity.So if the object's speed doubles, its KE increases by (2)2 = a factor of 4.


If the speed of a moving object doubles then what else doubles?

If the speed of a moving object doubles, the kinetic energy of the object also doubles. This is because kinetic energy is directly proportional to the square of the speed of an object (KE = 0.5 * m * v^2), so if the speed doubles, the kinetic energy will quadruple.


If the speed of an object increases its kinetic energy does what?

If the speed of an object increases, its kinetic energy also increases. Kinetic energy is directly proportional to the square of the object's speed, so a small increase in speed can result in a larger increase in kinetic energy.


When the speed of an object doubles does its kinetic energy double too?

Answer: Speed is distance over time (V=x/t). The kinetic energy of an object is calculated from the type KE=1/2mass by Speed squared. From these two formulas we can see that if the speed doubles, then the kinetic energy of an object becomes four times larger. Lets see an example: A car has a speed of 4 metres per second. Its kinetic energy is KE=1/2mass by speed squared, so its KE=1/2mass by 16 (since the square of 4 is 16). If the speed doubles and the car does 8 metres per second, its kinetic energy is: KE=1/2mass by 64 (since 8 squared gives us 64). If we divide 64/16 its 4. So we see that when speed doubles, the Kinetic Energy of an object becomes four times larger.


What will happen to kinetic energy of the object if its mass is doubled but the velocity remains the same?

If the mass of the object is doubled but the velocity remains the same, the kinetic energy of the object will also double. Kinetic energy is directly proportional to the mass of the object, so doubling the mass will result in a doubling of kinetic energy.


What happens to an objects kinetic energy when the velocity is doubled?

When an object's velocity doubles, its kinetic energy increases by a factor of four. This relationship is described by the kinetic energy equation, which states that kinetic energy is directly proportional to the square of an object's velocity.


How kinetic energy of an object changes when the speed of an abject doubles?

The kinetic energy of an object is directly proportional to the square of its velocity, so if the speed of an object doubles, its kinetic energy will increase by a factor of four. This relationship is described by the kinetic energy equation: KE = 1/2 * m * v^2, where KE is kinetic energy, m is mass, and v is velocity.


If the speed of an object doubles its elastic electricity?

If the speed of an object doubles, its kinetic energy increases by a factor of four. This results in a fourfold increase in elastic potential energy, because kinetic and elastic potential energy are directly related.


Would an object with a larger mass have more kinetic energy than an object with a smaller mass?

Yes, an object with a larger mass would have more kinetic energy than an object with a smaller mass if they are moving at the same speed. Kinetic energy is directly proportional to mass and speed, so a larger mass would contribute to a greater amount of kinetic energy, assuming the speed is constant.