the inertia
it has momentum due to its mass and velocity. The rolling motion creates kinetic energy that makes it difficult to slow down or stop abruptly. friction between the ball and the surface also plays a role in resisting its motion.
This is an example of inertia. The rolling ball has more mass, so it has greater inertia than the ping pong ball. This means it requires more force to stop the rolling ball compared to the ping pong ball at the same velocity.
The main force that causes the soccer ball to stop rolling is friction between the ball and the grass surface it is rolling on. As the ball moves, the grass exerts a force in the opposite direction of the ball's motion, gradually slowing it down until it comes to a stop.
Any amount of force can stop either kind of ball. But a greater force is required to stop a bowling ball than to stop a soccer ball IN THE SAME TIME, because the bowling ball has more mass, and therefore more momentum and more kinetic energy.
Friction is the force that would stop a ball from rolling. As the ball interacts with the surface it is rolling on, friction counteracts the motion by creating resistance. The type of surface and the smoothness of the ball will influence the amount of friction and, therefore, the stopping force.
it has momentum due to its mass and velocity. The rolling motion creates kinetic energy that makes it difficult to slow down or stop abruptly. friction between the ball and the surface also plays a role in resisting its motion.
It will not, unless it is acted upon another force. If it's rolling on something, then friction will stop it (the ball rubbing on the table slows it down).
This is an example of inertia. The rolling ball has more mass, so it has greater inertia than the ping pong ball. This means it requires more force to stop the rolling ball compared to the ping pong ball at the same velocity.
put your hand there to stop it.
Rolling the ball would be work and stopping the ball would be force.
The main force that causes the soccer ball to stop rolling is friction between the ball and the grass surface it is rolling on. As the ball moves, the grass exerts a force in the opposite direction of the ball's motion, gradually slowing it down until it comes to a stop.
Any amount of force can stop either kind of ball. But a greater force is required to stop a bowling ball than to stop a soccer ball IN THE SAME TIME, because the bowling ball has more mass, and therefore more momentum and more kinetic energy.
Friction is the force that would stop a ball from rolling. As the ball interacts with the surface it is rolling on, friction counteracts the motion by creating resistance. The type of surface and the smoothness of the ball will influence the amount of friction and, therefore, the stopping force.
Friction
It is an example of momentum (sometimes called "inertia"). Velocity x mass. The bowling ball is much, much heavier. With both rolling at the same speed, the bowling ball is harder to stop because it has much more mass.
The most significant force that will cause the ball to stop rolling is kinetic friction. As the ball moves across the surface, the friction between the ball and the ground will slow it down until it eventually stops.
A ball stops rolling when the force propelling it forward, such as a push or a slope, is no longer present. Friction between the ball and the surface it's rolling on also plays a role in slowing it down until it eventually comes to a stop.