Objects of different masses accelerate at the same rate on the moon because the acceleration due to gravity on the moon is constant for all objects, regardless of their mass. This is because the force of gravity is proportional to the mass of the object, so the acceleration is the same for all objects.
Not necessarily. Objects can have different masses or experiences different forces, resulting in different accelerations.
The gravitational force of Earth affects different masses in the same way by pulling them towards the center of the Earth with a force proportional to their mass. This means that objects of different masses will accelerate at the same rate towards the Earth due to gravity.
Objects of different masses have different effects because mass is a measure of the amount of matter in an object. Objects with more mass have more inertia, making them harder to accelerate or decelerate. Additionally, objects with more mass experience stronger gravitational forces than objects with less mass.
No.....because we need both mass and velocity to find the momentum if velocity is same that is 9.8m/s that is of free falling bodies.........mass will effect the final result.
Gravity affects all objects equally regardless of their mass, causing them to accelerate towards the ground at the same rate. This is described by the principle of equivalence, as stated in the theory of general relativity. Thus, objects of different masses will fall at the same rate when dropped from the same height in a vacuum.
Not necessarily. Objects can have different masses or experiences different forces, resulting in different accelerations.
More massive objects fall faster than less massive objects.
The gravitational force of Earth affects different masses in the same way by pulling them towards the center of the Earth with a force proportional to their mass. This means that objects of different masses will accelerate at the same rate towards the Earth due to gravity.
Objects of different masses have different effects because mass is a measure of the amount of matter in an object. Objects with more mass have more inertia, making them harder to accelerate or decelerate. Additionally, objects with more mass experience stronger gravitational forces than objects with less mass.
No.....because we need both mass and velocity to find the momentum if velocity is same that is 9.8m/s that is of free falling bodies.........mass will effect the final result.
Gravity affects all objects equally regardless of their mass, causing them to accelerate towards the ground at the same rate. This is described by the principle of equivalence, as stated in the theory of general relativity. Thus, objects of different masses will fall at the same rate when dropped from the same height in a vacuum.
A force on a large mass will accelerate it less than the same force on a smaller mass.
If the masses of two objects increase, their gravitational attraction towards each other will also increase. This will result in a stronger gravitational force between the two objects. Additionally, the force required to move or accelerate the objects will increase as their masses increase.
Their masses are different. (Mass = density * volume)
Galileo Galilei was the first to conduct experiments on the effect of gravity on falling objects. He demonstrated that objects of different masses fall at the same rate in the absence of air resistance, challenging the common belief at the time.
no
Yes, two objects with the same volume can have different masses if they are made of materials with different densities. Density is the mass of an object per unit volume, so objects of the same volume but different densities will have different masses.