Vector quantities have both magnitude and direction, so when adding or subtracting them, both the magnitudes and directions must be considered. Scalars, on the other hand, only have magnitudes and can be added or subtracted without concern for direction. This is why vector addition and subtraction involve vector algebra to handle both the magnitudes and directions appropriately.
Scaler Quantity- quantities which are described only by magnitude.Vector Quantity- quantities which are described by both magnitude as well as direction.
Mainly because they aren't scalar quantities. A vector in the plane has two components, an x-component and a y-component. If you have the x and y components for each vector, you can add them separately. This is very similar to the addition of scalar quantities; what you can't add directly, of course, is their lengths. Similarly, a vector in space has three components; you can add each of the components separately.
Vector quantities can be added and subtracted using vector addition, but they cannot be divided like scalar quantities. However, vectors can be multiplied in two ways: by scalar multiplication, where a scalar quantity is multiplied by the vector to change its magnitude, or by vector multiplication, which includes dot product and cross product operations that result in a scalar or vector output.
Electric flux is a scalar quantity, as it represents the amount of electric field passing through a given area. It does not have a direction associated with it, unlike vector quantities.
No, a scalar quantity cannot be the product of two vector quantities. Scalar quantities have only magnitude, while vector quantities have both magnitude and direction. When two vectors are multiplied, the result is a vector, not a scalar.
Scalar quantities - quantities that only include magnitude Vector quantities - quantities with both magnitude and direction
Scaler Quantity- quantities which are described only by magnitude.Vector Quantity- quantities which are described by both magnitude as well as direction.
Mainly because they aren't scalar quantities. A vector in the plane has two components, an x-component and a y-component. If you have the x and y components for each vector, you can add them separately. This is very similar to the addition of scalar quantities; what you can't add directly, of course, is their lengths. Similarly, a vector in space has three components; you can add each of the components separately.
Scaler. The electric field is its vector counterpart.
Scaler. Its vector counterpart is the electric field.
Vector quantities can be added and subtracted using vector addition, but they cannot be divided like scalar quantities. However, vectors can be multiplied in two ways: by scalar multiplication, where a scalar quantity is multiplied by the vector to change its magnitude, or by vector multiplication, which includes dot product and cross product operations that result in a scalar or vector output.
Electric flux is a scalar quantity, as it represents the amount of electric field passing through a given area. It does not have a direction associated with it, unlike vector quantities.
No, a scalar quantity cannot be the product of two vector quantities. Scalar quantities have only magnitude, while vector quantities have both magnitude and direction. When two vectors are multiplied, the result is a vector, not a scalar.
Scalar quantities are physical quantities that have only magnitude, such as mass, temperature, and time. Vector quantities have both magnitude and direction, such as velocity, displacement, and force. Scalars can be added algebraically, while vectors need to consider both magnitude and direction in addition to standard arithmetic operations.
Speed is a scalar .
scalar
Yes, scalar quantities can be added, as long as they are the same dimension and you keep units straight. For example you cannot add cubic meters to square meters. But (especially in the imperial system) pounds and ounces, or feet and inches are added, and displayed in that fashion. Minutes and seconds is another.