In the absence of air resistance, all objects fall at the same rate regardless of their mass or composition. This principle is known as the equivalence principle of gravity. So, a ball closer to the ground would not fall faster than one higher up.
Gravity is the force which makes a thrown ball fall back to the ground. It is the force which attracts all objects to the Earth.
No, in the absence of air resistance, all objects fall at the same rate regardless of their weight due to the acceleration of gravity. This was famously demonstrated by Galileo with his experiments involving balls of different weights. Thus, a lighter ball will not fall faster than a heavier ball in a vacuum.
Both the feather and the ball will reach the ground at the same time in a vacuum due to the acceleration due to gravity being constant for all objects. However, in the presence of air resistance, the feather will take longer to reach the ground compared to the ball due to its larger surface area and lighter weight.
The force that causes the ball to fall to the ground is gravity. Gravity is a natural force that attracts objects towards each other, and in the case of the ball falling, it is being pulled towards the Earth's center by the force of gravity.
A paper clip will likely fall faster in the air due to its higher density compared to a rubber ball. Density affects the rate at which objects fall through the air, with denser objects falling faster than less dense objects.
weight doesnt matter, the bigger one, which has the higher resistance will fall a tiny bit slower
it would hit the ground if there was one to hit
no?
a piece of pie
Gravity is the force which makes a thrown ball fall back to the ground. It is the force which attracts all objects to the Earth.
A dive is when you go for the ball [To fall on the ground or to land on knees to hit the volley ball]
No, in the absence of air resistance, all objects fall at the same rate regardless of their weight due to the acceleration of gravity. This was famously demonstrated by Galileo with his experiments involving balls of different weights. Thus, a lighter ball will not fall faster than a heavier ball in a vacuum.
Both the feather and the ball will reach the ground at the same time in a vacuum due to the acceleration due to gravity being constant for all objects. However, in the presence of air resistance, the feather will take longer to reach the ground compared to the ball due to its larger surface area and lighter weight.
they take less time to hit each other
So the ball can pick up more speed. For example, if you drop a feather on the ground, it takes a longer time to fall than a heavier object, such as a notepad. A bowling ball is heavier to gain speed faster.
The force that causes the ball to fall to the ground is gravity. Gravity is a natural force that attracts objects towards each other, and in the case of the ball falling, it is being pulled towards the Earth's center by the force of gravity.
Both will fall at the same time in vacuum because there is no resistance.