No, resistance is primarily determined by the material the wire is made of, its length, and its cross-sectional area. A longer and thicker wire would actually have lower resistance due to more space for electrons to flow through.
A thin and long wire made of a material with high resistivity, such as nichrome or tungsten, would have the greatest electrical resistance.
A long and thin wire made of a material with high resistivity and low conductivity would have the greatest electrical resistance. The resistance of a wire is directly proportional to its length and inversely proportional to its cross-sectional area, so a long, thin wire will have a greater resistance compared to a shorter, thicker wire.
A short thick copper wire at low temperature would have lower resistance compared to a long thin iron wire at high temperature. This is because resistance is inversely proportional to cross-sectional area and directly proportional to temperature and length of the wire. The short thick copper wire has a larger cross-sectional area, which results in lower resistance.
A long narrow metal wire would have more resistance compared to a short thick metal wire. Resistance is directly proportional to the length of the wire and inversely proportional to the cross-sectional area, so a longer wire with a smaller cross-sectional area will have higher resistance.
If the wire is short, its resistance will likely decrease. A shorter wire has less length for electrons to travel through, resulting in lower resistance according to the formula R = ρL/A, where R is resistance, ρ is resistivity, L is length, and A is cross-sectional area.
A thin and long wire made of a material with high resistivity, such as nichrome or tungsten, would have the greatest electrical resistance.
A long and thin wire made of a material with high resistivity and low conductivity would have the greatest electrical resistance. The resistance of a wire is directly proportional to its length and inversely proportional to its cross-sectional area, so a long, thin wire will have a greater resistance compared to a shorter, thicker wire.
The short thick copper wire at a low temperature would have the lowest resistance. Copper has lower electrical resistance than iron, and a shorter, thicker wire has lower resistance compared to a long thin wire, regardless of the temperature.
A short thick copper wire at low temperature would have lower resistance compared to a long thin iron wire at high temperature. This is because resistance is inversely proportional to cross-sectional area and directly proportional to temperature and length of the wire. The short thick copper wire has a larger cross-sectional area, which results in lower resistance.
A long narrow metal wire would have more resistance compared to a short thick metal wire. Resistance is directly proportional to the length of the wire and inversely proportional to the cross-sectional area, so a longer wire with a smaller cross-sectional area will have higher resistance.
"Better" depends on how much resistance you need for your circuit design.A short thick wire will have less resistance than a long thin wire of the same substance.Whether that's better or worse depends on how you plan to use the wire.
If the wire is short, its resistance will likely decrease. A shorter wire has less length for electrons to travel through, resulting in lower resistance according to the formula R = ρL/A, where R is resistance, ρ is resistivity, L is length, and A is cross-sectional area.
it just won't take long
The maximum current that a cell can deliver flows when the resistance between the terminals of the cell is zero. This situation occurs when the terminals are connected by a conductor with very low resistance, such as a thick wire or a wrench. But not for long.
Makeups can help your eye lashes to be long and thick.
its too small make a bigger one
Cacti have thick stems and skins because they need to store water over long periods of time, and the liquid would evaporate quickly in deasert conditions.