If the normal force and gravitational force acting on an object were unequal, the object would either accelerate or decelerate in the direction of the net force. If the normal force is greater, the object will move upwards; if the gravitational force is greater, the object will move downwards.
Yes, there are gravitational and normal forces acting on the book. The gravitational force acts downwards towards the center of the Earth, while the normal force acts perpendicular to the surface of the table and supports the weight of the book.
The normal force is the force exerted by a surface on an object in contact with it, perpendicular to the surface. The gravitational force is the force pulling the object downward due to gravity. On an incline, the normal force and gravitational force are not directly opposite each other, but the normal force can be broken down into components that counteract the gravitational force pulling the object down the incline.
Yes, if a freezer is at a constant velocity or stationary, there are balanced forces acting on it. Typically, these forces include the gravitational force acting downward and the normal force acting upward from the surface on which the freezer rests.
The force acting on a weight is its gravitational force, which is the force pulling it downward towards the Earth. The forces acting on a weightlifter when lifting a weight include the gravitational force acting on the weight being lifted, the normal force exerted by the ground pushing back up on the weightlifter, and the muscular force applied by the weightlifter to lift the weight against gravity.
The force acting on the book when it is resting on a table is the gravitational force pulling the book downwards. This force is equal in magnitude and opposite in direction to the normal force exerted by the table on the book, keeping it in equilibrium.
Yes, there are gravitational and normal forces acting on the book. The gravitational force acts downwards towards the center of the Earth, while the normal force acts perpendicular to the surface of the table and supports the weight of the book.
The normal force is the force exerted by a surface on an object in contact with it, perpendicular to the surface. The gravitational force is the force pulling the object downward due to gravity. On an incline, the normal force and gravitational force are not directly opposite each other, but the normal force can be broken down into components that counteract the gravitational force pulling the object down the incline.
Yes, if a freezer is at a constant velocity or stationary, there are balanced forces acting on it. Typically, these forces include the gravitational force acting downward and the normal force acting upward from the surface on which the freezer rests.
The force acting on a weight is its gravitational force, which is the force pulling it downward towards the Earth. The forces acting on a weightlifter when lifting a weight include the gravitational force acting on the weight being lifted, the normal force exerted by the ground pushing back up on the weightlifter, and the muscular force applied by the weightlifter to lift the weight against gravity.
The force acting on the book when it is resting on a table is the gravitational force pulling the book downwards. This force is equal in magnitude and opposite in direction to the normal force exerted by the table on the book, keeping it in equilibrium.
The reaction force to the gravitational force acting on your body as you sit in your desk chair is the normal force exerted by the chair on your body. It is equal in magnitude and opposite in direction to the force of gravity, balancing the forces and keeping you in equilibrium.
Yes, there are forces acting on the pen. When a pen is placed on a surface, it experiences a gravitational force acting downward and a normal force acting upward from the surface to support its weight. These forces can be represented by arrows pointing in opposite directions: gravity pointing downward and the normal force pointing upward.
When you stand on ice, the two forces acting on you are gravity pulling you downward towards the center of the Earth and the normal force exerted by the ice pushing upward on your feet to support your weight and prevent you from sinking.
An angle can affect friction by changing the normal force acting on an object. When an object is on an inclined plane, the normal force is reduced, which can affect the frictional force acting on the object. As the angle increases, the component of gravitational force acting parallel to the surface also increases, which can increase the frictional force to prevent the object from sliding.
The main forces acting on a box resting on a table are the gravitational force pulling it downwards and the normal force exerted by the table supporting the weight of the box. These forces are balanced when the box is at rest.
-- the gravitational attraction between the football and the Earth, acting vertically downward; -- the normal force of the ground or the shelf under the football, acting vertically upward. These two forces are precisely equal and opposite. If they're weren't, then the football would be accelerating vertically, not at rest.
When there is no movement, the main forces acting on an object are gravity and normal force. Gravity pulls the object towards the center of the Earth, while the normal force acts perpendicular to the surface the object is on to balance the gravitational force.