Magnetic Stripe technology is one of the most universal methods in Automatic Identification and Data Capture (AIDC) industry. This technology is very much established and has been developed for quite a long time. Magnetic stripe technology is used everywhere
Magnetic stripes confirm the authenticity of a credit or debit card and store essential account information that is required for transactions.
Magnetic stripes on the sea floor are caused by the alternating polarities of Earth's magnetic field. As magma rises and solidifies at mid-ocean ridges, it locks in the magnetic orientation of the Earth's field at that time. Over time, as the Earth's magnetic field reverses, these magnetic stripes are preserved, providing a record of past magnetic field variations.
Magnetic stripes on the ocean floor are formed as magma from the mantle rises at mid-ocean ridges and solidifies into rock. The Earth's magnetic field periodically reverses its polarity, causing magnetic minerals in the cooling rock to align with the prevailing magnetic field. These alternating magnetic orientations create stripes of normal and reversed polarity that are preserved in the oceanic crust as it spreads away from the ridges. By studying these magnetic stripes, scientists can reconstruct the history of the Earth's magnetic field reversals and the seafloor spreading process.
When Earth's magnetic poles have reversed themselves.
As you move away from an ocean ridge, the rocks get older.
Magnetometer.
stripes unmatching and wrong makeup
Because of the stripes at the sea floor which are magnetic minerals
Magnetic stripes on the seafloor are alternating bands of magnetized rock that form parallel to mid-ocean ridges. These stripes are a result of Earth's magnetic field changing direction over time and getting preserved in the rocks as they cool and solidify. They provide evidence for seafloor spreading and plate tectonics.
Because of the stripes at the sea floor which are magnetic minerals
Magnetic stripes on the sea floor form as a result of the movement of tectonic plates. When magma rises to the surface at mid-ocean ridges and solidifies into new rock, it records the Earth's magnetic field at the time. This creates alternating stripes of normal and reversed polarity as the Earth's magnetic field has flipped multiple times throughout history.
The pattern of magnetic reversals along the sides of mid-ocean ridges resembles stripes that alternate in polarity, created as new oceanic crust is formed at mid-ocean ridges and records the Earth's changing magnetic field. These magnetic stripes provide evidence for seafloor spreading and plate tectonics.