2/4
A fair coin would be expected to land on heads 75 times.
Roughly half of the time, so about 350 times.
The probability of a fair coin landing heads up is always 0.5, regardless of previous outcomes. Each coin flip is an independent event, so the outcome of the previous flips does not affect the outcome of the next flip. Therefore, the probability of the coin landing heads up on the next flip is still 0.5.
The probability of flipping a heads is 1/2 and the probability of rolling a 6 is 1/6. By the laws of probability it would be logical to multiply them together, (1/2)(1/6) thus the answer being 1/12 with is roughly eight percent.
This is a probability question. Probabilities are calculated with this simple equation: Chances of Success / [Chances of Success + Chances of Failure (or Total Chances)] If I flip a coin, there is one chance that it will land on heads and one chance it will land on tails. If success = landing on heads, then: Chances of Success = 1 Chances of Failure = 1 Total Chances = 2 Thus the probability that a coin will land on heads on one flip is 1/2 = .5 = 50 percent. (Note that probability can never be higher than 100 percent. If you get greater than 100 you did the problem incorrectly) Your question is unclear whether you mean the probability that a coin will land on head on any of 8 flips or all of 8 flips. To calculate either you could write out all the possible outcomes of the flips (for example: heads-heads-tails-tails-heads-tails-heads-heads) but that would take forvever. Luckily, because the outcome of one coin flip does not affect the next flip you can calculate the total probability my multiplying the probabilities of each individual outcome. For example: Probability That All 8 Flips Are Heads = Prob. Flip 1 is Heads * Prob. Flip 2 is Heads * Prob. Flip 3 is Heads...and so on Since we know that the probability of getting heads on any one flips is .5: Probability That All 8 Flips Are Heads = .5 * .5 * .5 * .5 * .5 * .5 * .5 * .5 (or .58) Probability That All 8 Flips Are Heads = .00391 or .391 percent. The probability that you will flip a heads on any of flips is similar, but instead of thinking about what is the possiblity of success, it is easier to approach it in another way. The is only one case where you will not a heads on any coin toss. That is if every outcome was tails. The probability of that occurring is the same as the probability of getting a heads on every toss because the probability of getting a heads or tails on any one toss is 50 percent. (If this does not make sense redo the problem above with tails instead of heads and see if your answer changes.) However this is the probability of FAILURE not success. This is where another probability formula comes into play: Probability of Success + Probability of Failure = 1 We know the probability of failure in this case is .00391 so: Probability of Success + .00391 = 1 Probability of Success = .9961 or 99.61 percent. Therefore, the probability of flipping a heads at least once during 8 coin flips is 99.61 percent. The probability of flipping a heads every time during 8 coin flips is .391 percent.
Heads or Tails
They are HHT HTH and THH
30 maybe but i say 35 or 31
A fair coin would be expected to land on heads 75 times.
Roughly half of the time, so about 350 times.
The probability of flipping a coin 24 times and getting all heads is less than 1 in 16 million. (.524) It would seem that no one has ever done that.
It is neither. If you repeated sets of 8 tosses and compared the number of times you got 6 heads as opposed to other outcomes, it would comprise proper experimental probability.
200 dimes or $20
we would die
It would be 2 dimes, or 20 cents.
Dimes are worth $0.10 each, and there are 50 dimes in one pound. Therefore, 10 pounds of dimes would contain 500 dimes, which is worth $50.
There are 10 dimes in a dollar, so 10 dollars times 10 dimes would equal 100 dimes.