190
Yes, 100 times bigger
With two dice the following totals are possible....... Dice A .. Dice B2 - 1 ..... 13 - 1 ..... 23 - 2 ..... 14 - 1 ..... 34 - 2 ..... 24 - 3 ..... 15 - 1 ..... 45 - 2 ..... 35 - 3 ..... 25 - 4 ..... 16 - 1 ..... 56 - 2 ..... 46 - 3 ..... 36 - 4 ..... 26 - 5 ..... 17 - 1 ......67 - 2 ..... 57 - 3 ..... 47 - 4 ..... 37 - 5 ..... 27 - 6 ..... 18 - 2 ......68 - 3 ..... 58 - 4 ..... 48 - 5 ..... 38 - 6 ..... 29 - 3 ..... 69 - 4 ..... 59 - 5 ..... 49 - 6 ..... 310 - 4 ..... 610 - 5 ..... 510 - 6 ..... 411 - 5 ..... 611 - 6 ..... 512 - 6 ..... 6So, there are 36 different combinations of how the dice might land and 6 of those total 7. Therefore it is 6 chances in 36 that you'll get 7, which reduced to 1 in 6.
Let's try and figure this one out...First case (the easy one) - We want to use any of the 10 digits to create a 5-digit number. In this case, we have 5 slots and in each slot we can put any of 10 digits.So the answer is 10*10*10*10*10 = 510 = 100,000 combinationsSecond case - We want to create a 5-digit number using any of the 10 digits, but we only want to use each digit once. This turns out to be only a little more difficult.Let's look at each digit individually.First digit - We can use any digit from [0-9], so we have 10 possibilities.Second digit - We can use any digit from [0-9] except for the one used in the first digit, so we now have 9 possibilities.Third digit - We can use any digit from [0-9] except for the ones used in the first and second digits, so we now have 8 possibilities.Fourth digit - As above, except we now have 7 possible choices.Fifth digit - As above, except we now have 6 possible choices.So our final number of combinations is 10 * 9 * 8 * 7 * 6 = 30,240 combinationsSpecial case - What happens if we want to create a number which does not begin with a zero? Well, we can make a simple adjustment to either of the above cases to take care of this. Just observe that the first digit is not limited to 9 possibilities [1-9], not 10.Special first case = 9 * 10 * 10 * 10 * 10 = 90,000 combinationsSpecial second case = 9 * 9 * 8 * 7 * 6 = 27,216 combinations
A 3-wheel lock with each wheel having digits from 0 to 9 means each wheel can have 10 possible values (0 through 9). To find the total number of combinations, you calculate: 10 x 10 x 10 = 1000 So, there are 1000 possible combinations. Here's a list of all combinations from 000 to 999: 000, 001, 002, 003, 004, 005, 006, 007, 008, 009, 010, 011, 012, 013, 014, 015, 016, 017, 018, 019, 020, 021, 022, 023, 024, 025, 026, 027, 028, 029, 030, 031, 032, 033, 034, 035, 036, 037, 038, 039, 040, 041, 042, 043, 044, 045, 046, 047, 048, 049, 050, 051, 052, 053, 054, 055, 056, 057, 058, 059, 060, 061, 062, 063, 064, 065, 066, 067, 068, 069, 070, 071, 072, 073, 074, 075, 076, 077, 078, 079, 080, 081, 082, 083, 084, 085, 086, 087, 088, 089, 090, 091, 092, 093, 094, 095, 096, 097, 098, 099, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999
Now a days the rainforest averages about 510 cm. a year. The average temperature is 78-80 degrees
80 to around 155 pounds but it all depends how tall and how much you eat because your age doesn't connect with your weight.
Depends, mainly on gender and age.
510 bc
Manual says 1994
17% off of $510 = $423.30 = 17% discount applied to 170 = $510 - (17% * $510) = $510 - (0.17 * $510 ) = $510 - 86.7 = $423.30
30% of 510= 30% * 510= 0.3 * 510= 153
17% of 510 = 17% * 510 = 0.17 * 510 = 86.7
They are the multiples of 510 which are numbers of the form k*510 where k is an integer.They are the multiples of 510 which are numbers of the form k*510 where k is an integer.They are the multiples of 510 which are numbers of the form k*510 where k is an integer.They are the multiples of 510 which are numbers of the form k*510 where k is an integer.
You would multiply 510 by 1.2 to get your answer. The idea is: 510 plus twenty percent of 510 would be 1 X 510 + .2 X 510. Factoring out the 510 from each of these terms you get 510 (1 + .2)
the dry weight is 484pounds add fluids and your looking a 510-520pounds
510