The data segment register (DS) is a critical component in the architecture of x86 processors, primarily used to point to the segment of memory that contains data. It helps manage memory by allowing the CPU to access a specific area of memory where variables and data structures are stored. By using the DS, the processor can efficiently read from and write to the data segment, facilitating organized memory access in segmented memory models.
The code segment (CS) register is used for access to program code. The data segment (DS) register is used for access to data. The extra segment (ES) register is used for access to data during certain string primitive operations. The stack segment (SS) register is used for access to stack data.Any of these implied uses can be overridden with a segment override prefix opcode.
The segment register in the 8086/8088 provide a base address for any memory access. There are four segment registers, CS - Code Segment, DS - Data Segment, SS - Stack Segment, and ES - Extra Segment. Each in used in the context of a particular instruction and contains the base address of the memory segment divided by 16. This allows the processor to access up to 1 MB of memory, though only in segments of 64 KB at a time.
The SI (Source Index) and DI (Destination Index) registers are useful in repeated string operations, such as copy. The DS (Data Segment) register is paired up with SI and the ES (Extra Segment) register is paired up with DI.
There are four segment registers on the 8086 and 8088. These are CS (code for code), DS (data segment), ES (extra data segment), and SS (stack segment).
there are 14 registers in 8088 micro processor. All the 14 are 16 bit registers. They are4 segment registers viz - code segment register, stack segment register, data segment register, extra segment register.general registers are - accumulator register i.e. AX, base register i.e. BX, count register i.e. CX, data register i.e. DX and stack pointer (SP), base pointer (BP).index registers are - source index(SI), destination index(DI),and the other registers are instruction pointer and flags register.
Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor instructions. The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. CS register cannot be changed directly. The CS register is automatically updated during far jump, far call and far return instructions. Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment. DS register can be changed directly using POP and LDS instructions. Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor instructions. The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. CS register cannot be changed directly. The CS register is automatically updated during far jump, far call and far return instructions. Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment. DS register can be changed directly using POP and LDS instructions.
The data is held in a register. There may be many registers holding data. When new data is entered the old data in the register(s) is overwritten.
In the 8086/8088, the logical address corresponds to a segment register, such as CS (Code Segment), DS (Data Segment), SS (Stack Segment) and ES (Extra Segment). The segment register is selected by context, or it is explicitly selected using a segment override prefix. The segment register is left shifted 4 bits into a 20-bit temporary register. This is the same as multiplying it by 16. Then the logical address is added to that result. The final result is the physical address.
holds 16 bit data just fetched from the memory
In computer architecture, an offset in a segment register refers to the specific address within a segment of memory that the segment register points to. Segment registers are used to divide memory into different segments, enabling easier access and management of data. The offset is added to the base address contained in the segment register to form the effective address of a memory location. This method allows for more efficient memory utilization and organization, particularly in systems with limited addressing space.
A segment register is a register that contains the base address, or something related to the base address, of a region of memory. In the 8086/8088, the four segment registers are multiplied by 16 and added to the effective address to form the physical address. An index register, on the other hand, is a register that contains an address that is added to another address to form the effective address. In the 8086/8088, four address components are involved; 1.) the displacement contained within the instruction, often called the offset, 2.) a base address specified by the r/m field, often the BP or BX register, 3.) an index address specified by the r/m field, often the SI or DI register, and 4.) the segment address specified by context or by a segment override prefix, often the CS, DS, SS, or ES register.
The usage of "segment" and "data bus" in the question appears inconsistent, and does not completely make sense. If you mean the data segment in the 8086/8088, then this is the region of memory mapped by the Data Segment (DS) register, usually reserved for operands in memory. If you are talking about the 8085, then the question does not make sense at all.