Imagine a long spring or slinky (the toy). Now if you give a jerk to the spring from one side, while keeping the other end fixed, you will be able to see a compressions travelling from your end to the fixed end of the spring. Congrats, you just saw a longitudinal wave!
Longitudinal waves are mechanical waves in which the particles of the medium vibrate in the same direction as the wave's energy propagation. Examples of longitudinal waves include sound waves and seismic waves.
Longitudinal waves are mechanical waves in which the particles of the medium vibrate back and forth in the same direction as the wave's motion. They have compressions (areas of high pressure) and rarefactions (areas of low pressure) as they propagate through the medium. Examples include sound waves.
For a sound wave traveling through air, the vibrations of the particles are best described as longitudinal.
Longitudinal waves are vibrations that travel in the same direction as the wave is moving. The particles of the medium move parallel to the direction of the wave propagation. Examples include sound waves and seismic waves.
P-waves are longitudinal and S-waves are transverse waves.
No Sound waves are longitudinal. Being longitudinal they cannot be POLARISED.
P-waves are longitudinal and S-waves are transverse waves.
transverse and longitudinal
longitudinal wave
All sound waves are longitudinal (compression/rarefaction) waves.
Sound waves are longitudinal waves, where the particles of the medium vibrate parallel to the direction of the wave. Light waves, on the other hand, are transverse waves, where the oscillation is perpendicular to the direction of wave travel.
Light waves are transverse waves. This means that the oscillation of the wave is perpendicular to the direction of energy propagation.