420 JKg-1C-1
490 JKg-1K-1
specific heat capacity
To calculate the amount of heat needed to raise the temperature of steel by 10 degrees Celsius, you would need to know the specific heat capacity of steel. This value represents how much heat is required to raise the temperature of a given mass of steel by 1 degree Celsius. Once you have this information, you can use the formula Q = mcΔT, where Q is the heat energy, m is the mass of the steel, c is the specific heat capacity, and ΔT is the temperature change.
The specific heat capacity of polyester is 2.35degrees
The specific heat of aluminum is approximately 0.897 J/g°C and the specific heat of mild steel is approximately 0.450 J/g°C. This means that aluminum requires more energy to raise its temperature than mild steel for a given mass.
No. Metals have a relatively low specific heat.
Water has a higher heat capacity than steel. This means that water can absorb and store more heat energy without undergoing a significant change in temperature compared to steel. A substance with a higher heat capacity requires more energy to raise its temperature.
What is the specific heat capacity of kno3
Heat capacity is the total amount of heat energy required to raise the temperature of a substance by a given amount, while specific heat capacity is the amount of heat energy required to raise the temperature of a unit mass of a substance by one degree Celsius. Specific heat capacity is a property intrinsic to the substance, while heat capacity depends on the amount of the substance present. The heat capacity of a substance is the product of its specific heat capacity and its mass.
A calorimeter is commonly used to calculate specific heat capacity. This device measures the heat transfer in a system when a material undergoes a temperature change, allowing for the determination of specific heat capacity.
The heat capacity depends on the mass of a material and is expressed in j/K.The specific heat capacity not depends on the mass of a material and is expressed in j/mol.K.
Heat capacicity of steel: 460 J/kg.K 0.460 J/g.K