The "n stats" for 1915 generally refer to various statistical data collected during that year, which can include Demographics, economic indicators, and social metrics. For example, the U.S. Census conducted in 1910 provided data on population growth, while other reports might include statistics on employment rates, production outputs, and military enlistments during World War I. Specific data points can vary widely depending on the context and the type of statistics being referenced. If you are looking for specific statistics, please clarify the area of interest.
N. R. Pathak was born on 1915-09-30.
Automated trash pickup, often associated with robotic or automated systems for waste collection, does not have a single inventor. Various innovations in waste management technology have emerged over the years, with contributions from multiple companies and engineers. Notably, systems like the Automated Waste Collection System (AWCS) were developed in the 1960s by Swedish engineer Sten M. H. S. M. C. O. J. W. K. B. N. H. H. H. K. R. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R.
nCr + nCr-1 = n!/[r!(n-r)!] + n!/[(r-1)!(n-r+1)!] = n!/[(r-1)!(n-r)!]*{1/r + 1/n-r+1} = n!/[(r-1)!(n-r)!]*{[(n-r+1) + r]/[r*(n-r+1)]} = n!/[(r-1)!(n-r)!]*{(n+1)/r*(n-r+1)]} = (n+1)!/[r!(n+1-r)!] = n+1Cr
n p =n!/(n-r)! r and n c =n!/r!(n-r)! r
This browser is totally bloody useless for mathematical display but...The probability function of the binomial distribution is P(X = r) = (nCr)*p^r*(1-p)^(n-r) where nCr =n!/[r!(n-r)!]Let n -> infinity while np = L, a constant, so that p = L/nthenP(X = r) = lim as n -> infinity of n*(n-1)*...*(n-k+1)/r! * (L/n)^r * (1 - L/n)^(n-r)= lim as n -> infinity of {n^r - O[(n)^(k-1)]}/r! * (L^r/n^r) * (1 - L/n)^(n-r)= lim as n -> infinity of 1/r! * (L^r) * (1 - L/n)^(n-r) (cancelling out n^r and removing O(n)^(r-1) as being insignificantly smaller than the denominator, n^r)= lim as n -> infinity of (L^r) / r! * (1 - L/n)^(n-r)Now lim n -> infinity of (1 - L/n)^n = e^(-L)and lim n -> infinity of (1 - L/n)^r = lim (1 - 0)^r = 1lim as n -> infinity of (1 - L/n)^(n-r) = e^(-L)So P(X = r) = L^r * e^(-L)/r! which is the probability function of the Poisson distribution with parameter L.
Combinations of r from n without replacement is c(n,r) = n!/(n-r)!r! c(n,r) = 23!/20!3! c(n,r) = 1771.
nCr=n!/(r!(n-r)!)
Theodore N. Ely died in 1915.
Paul N. Yu was born in 1915.
Tim N. Machin died in 1915.
n(n-r)/r
Kenneth R. Powell was born in 1915.