molly-tyga
To find the coordinates of a point after dilation, you multiply the original coordinates by the scale factor. If the point is represented as ( (x, y) ) and the scale factor is ( k ), the new coordinates become ( (kx, ky) ). If the dilation is from a center point other than the origin, you would first subtract the center coordinates from the point, apply the scale factor, and then add the center coordinates back to the result.
To find the image of points A, B, and C after a dilation centered at the origin with a scale factor of 2, you multiply each coordinate by 2. The new coordinates are A'(12, 14), B'(8, 4), and C'(0, 14). Thus, the images of the points after dilation are A'(12, 14), B'(8, 4), and C'(0, 14).
To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.
0.5
The simplest formula, in polar coordinates, is r = 7.
To dilate the point ( c(93) ) by a scale factor of 3 using the origin as the center of dilation, you multiply the coordinates of the point by 3. If ( c(93) ) refers to the point ( (9, 3) ), the transformed coordinates would be ( (9 \times 3, 3 \times 3) = (27, 9) ). Therefore, the transformed point after the dilation is ( c(27, 9) ).
It is (27, 9).
To find the scale factor of a dilation with the center at the origin, you can compare the coordinates of a point before and after the dilation. If a point ( P(x, y) ) is dilated to ( P'(x', y') ), the scale factor ( k ) can be calculated using the formula ( k = \frac{x'}{x} = \frac{y'}{y} ), assuming ( x ) and ( y ) are not zero. This scale factor indicates how much the original point has been enlarged or reduced.
To find the image of point Q under a dilation centered at (0, 0) with a scale factor of 0.5, you multiply the coordinates of Q by 0.5. If Q has coordinates (x, y), the image of Q after dilation will be at (0.5x, 0.5y). This means that the new point will be half the distance from the origin compared to the original point Q.
the origin and it has the coordinates of (0,0)
The coordinates of a square can be defined by the positions of its four corners (vertices) in a Cartesian coordinate system. For example, if a square is centered at the origin with a side length of 2 units, its vertices could be at the coordinates (1, 1), (1, -1), (-1, -1), and (-1, 1). The specific coordinates will vary based on the square's size and position in the coordinate plane.