OK this means " 3 Ships Crossing the South Border on the Captain Deer".
By,
Dr. Smith
The SSD 3 module 1 exam has up to 27 multiple choice questions. The answers starting at 1 and ending at 27 are as follows: D, B, A, A, C, B, D, D, A, C, A, B, C, C, A, D, C, A, D, A, A, D, D, B, B, D, C.
The SSD 3 module 1 exam has up to 27 multiple choice questions. The answers starting at 1 and ending at 27 are as follows: D, B, A, A, C, B, D, D, A, C, A, B, C, C, A, D, C, A, D, A, A, D, D, B, B, D, C.
Suggested layouts . . . Just play ! ( Not sure if images will show . . . If not, here they are written out . . . Layout 01 - A, B, C, D, C, B, A D, C, A, B, A, C, D A, B, C, D, C, B, A D, C, A, B, A, C, D A, B, C, D, C, B, A D, C, A, B, A, C, D A, B, C, D, C, B, A D, C, A, B, A, C, D A, B, C, D, C, B, A Layout 02 - C, D, B, A, B, D, C D, B, A, D, A, B, D B, A, D, C, D, A, B A, D, C, B, C, D, A D, C, B, A, B, C, D A, D, C, B, C, D, A B, A, D, C, D, A, B D, B, A, D, A, B, D C, D, B, A, B, D, C Layout 03 - D, B, C, B, C, B, D A, D, B, C, B, D, A D, A, D, B, D, A, D C, D, A, D, A, D, C B, C, D, A, D, C, B C, D, A, D, A, D, C D, A, D, B, D, A, D A, D, B, C, B, D, A D, B, C, B, C, B, D Layout 04 - A, B, C, D, C, B, A B, A, B, C, B, A, B D, B, A, B, A, B, D C, D, B, A, B, D, C A, C, D, B, D, C, A C, D, B, A, B, D, C D, B, A, B, A, B, D B, A, B, C, B, A, B A, B, C, D, C, B, A
B b b d d b d d d c b a a a a d d b d d d c b a c b a g d b b b c b a g e g d b b b d d b d d d c b a c b a g e g b d d d d d c b d d d d d e b a c d c b d d d c b a c g c b c d d d d d c b c d d d d d e b a c d c b d d d c b a c g c b b c b b b b d d b d d d c b a a a d d b d d d c b a c b a g d d b b b c b a g e g b =)
The answer is 4! (4 factorial), the same as 4x3x2x1, which equals 24 combinations. The answer is 24 and this is how: A b c d A b d c A c d b A c b d A d c b A d b c B c d a B c a d B d a c B d c a B a c d B a d c C d a b C d b a C a b d C a d b C b d a C b a d D a b c D a c b D b c a D b a c D c a b D c b a
The water balance lifts in Folkestone were designed by Sir William F. C. H. W. D. A. D. B. C. A. D. C. H. J. D. A. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C. H. B. C. A. D. C.
b d d b b c b b a b a c c d d b c b a d c a b c d a b c c a a d b d d b a a d b c a c d d c b b a
Nims 100 exam answers D C A B B D A C C D D A A B B C A B C D A B A Nims 200 exam answers B D B C B A D D B D C D A A B D C A B B C D A Nims 700 exam answers D A B D C D B A D B C C B B B A D B C C  Nims 800 exam answers A A C D B C C D B C A D B C D B D A C B
Lets call the whole number 'a' and the mixed number 'b c/d'. The latter is equal to b + c/d. a * (b + c/d) = a*b + a*c/b -which mean you can multiply the integer of the mixed number by 'a' and the fraction by 'a' - then add them together. An example: 3 * 2½ = 3*2 + 3*½ = 6 + 3/2 = 6+ 1+½ = 7½
The general formula for the number of combinations of r things chosen from n different things is C(n,r) = n!/ r!(n-r)! How many ways can 5 players be chosen from a team of 13? (Where the order you choose the players does not matter). So C(13,5) = 13!/5!(13-5)! Or 1,287
b d d b b c b b a b a c c d d b c b a d c a b c d a b c c a a d b d d b a a d b c a c d d c b b a
int a=2, b=3, c=4, d=5; printf ("%d/%d + %d/%d = %d/%d\n", a, b, c, d, a*d+b*c, b*d);