True Ireland was England first attempt at colonisation
False. Only Northern Ireland is claimed as part of the United Kingdom, but not the Republic of Ireland.
True, Viking ports were established at Dublin.
Extramural meansOccurring or situated outside of the walls or boundaries, as of a community ...
False
Ulster is in the north of Ireland
True AND False OR True evaluates to True. IT seems like it does not matter which is evaluated first as: (True AND False) OR True = False OR True = True True AND (False OR True) = True AND True = True But, it does matter as with False AND False OR True: (False AND False) OR True = False OR True = True False AND (False OR True) = False AND True = False and True OR False AND False: (True OR False) AND False = True AND False = False True OR (False AND False) = True OR False = True Evaluated left to right gives a different answer if the operators are reversed (as can be seen above), so AND and OR need an order of evaluation. AND can be replaced by multiply, OR by add, and BODMAS says multiply is evaluated before add; thus AND should be evaluated before OR - the C programming language follows this convention. This makes the original question: True AND False OR True = (True AND False) OR True = False OR True = True
False. St. Patrick, the patron saint of Ireland, was actually born in Roman Britain, likely in the late 4th century. He was kidnapped and brought to Ireland as a slave but later escaped and returned to convert the Irish to Christianity. His missionary work in Ireland is what earned him his status as the patron saint.
False. It is software.
True
Assuming that you mean not (p or q) if and only if P ~(PVQ)--> P so now construct a truth table, (just place it vertical since i cannot place it vertical through here.) P True True False False Q True False True False (PVQ) True True True False ~(PVQ) False False False True ~(PVQ)-->P True True True False if it's ~(P^Q) -->P then it's, P True True False False Q True False True False (P^Q) True False False False ~(P^Q) False True True True ~(P^Q)-->P True True False False
Yes. If all the question's parts are true, then the answer is true. If all the question's parts are false, then the answer is false. If one of the question's parts is false and the rest true, then the answer is false. Logically, this is illustrated below using: A = True, B = True, C = True, D = False, E = False, F = False A and B and C = True D and E and F = False A and B and D = False If you add NOT, it's a bit more complicated. A and NOT(D) = True and True = True NOT(D) and D = True and False = False NOT(A) and NOT(B) = False and False = False Using OR adds another layer of complexity. A OR NOT(E) = True OR True = True NOT(D) OR D = True OR False = False NOT(A) OR NOT(B) = False OR False = False Logic is easy once you understand the rules.