t
tan(30 deg) = 0.5774, approx.
We know that sin @ = h/l is the basic principle of working of sine bar.Differentiating above equation,.. . cos @ . d@ = l.dh - h.dl_________ l*ld@ =tan@(dh/l - dl/l)This indicate that error is a function of tan @ and below 45 degree error is smaller which suddenly increases above 45 degree. because of this reason sine bar is preferred for measuring angle below 45
If the angles are measured in degrees or gradians, then: tan 3 > tan 2 > tan 1 If the angles are measured in radians, then: tan 1 > tan 3 > tan 2.
This may not be the most efficient method but ... Let the three angle be A, B and C. Then note that A + B + C = 20+32+38 = 90 so that C = 90-A+B. Therefore, sin(C) = sin[(90-(A+B) = cos(A+B) and cos(C) = cos[(90-(A+B) = sin(A+B). So that tan(C) = sin(C)/cos(C) = cos(A+B) / sin(A+B) = cot(A+B) Now, tan(A+B) = [tan(A)+tan(B)] / [1- tan(A)*tan(B)] so cot(A+B) = [1- tan(A)*tan(B)] / [tan(A)+tan(B)] The given expressin is tan(A)*tan(B) + tan(B)*tan(C) + tan(C)*tan(A) = tan(A)*tan(B) + [tan(B) + tan(A)]*cot(A+B) substituting for cot(A+B) gives = tan(A)*tan(B) + [tan(B) + tan(A)]*[1- tan(A)*tan(B)]/[tan(A)+tan(B)] cancelling [tan(B) + tan(A)] and [tan(A) + tan(B)], which are equal, in the second expression. = tan(A)*tan(B) + [1- tan(A)*tan(B)] = 1
tannest, tanner
The comparative degree of "holy" is "holier."
Teapot is a noun and, as such, does not have a comparative degree.
The comparative degree is wider.
"Less" is the comparative degree of little.
Thriftier is the comparative degree of thrifty.
The comparative degree for "lush" is "lusher."
The comparative degree of "light" is "lighter."
better for its comparative and best for its superlative
"Speed" is a noun and a verb and, as such, does not have a comparative degree. The comparative of the adjective speedy is speedier.
"Less" is the comparative degree of little. The superlative degree is least.
The comparative degree for "moody" is "more moody."