A counterclockwise rotation of 270 degrees about the origin is equivalent to a clockwise rotation of 90 degrees. To apply this transformation to a point (x, y), you can use the rule: (x, y) transforms to (y, -x). This means that the x-coordinate becomes the y-coordinate, and the y-coordinate becomes the negative of the x-coordinate.
Firstly, with the unit circle (r=1) we need to know that:at 270 degrees our coordinates are (0, -1)sine(270 degrees) = -1cosine(250 degrees) = 0cotangent = cosine / sinetherefore: cot ( 270 degrees) = 0/-1 = 0The answer is 0.
Assuming that you mean 270 degrees and not radians or any of the other angular measures, the answer is 3/4.
270 is an integer and so it would be sensible to represent it as an integer: 270 degrees. There is no requirement in the question to change the measurement unit, and if you do want that then you will need to specify the required unit. I suggest the answer should be 3*pi/2 radians.
sin(0) = 0, sin(90) = 1, sin(180) = 0, sin (270) = -1 cos(0) = 1, cos(90) = 0, cos(180) = -1, cos (270) = 0 tan(0) = 0, tan (180) = 0. cosec(90) = 1, cosec(270) = -1 sec(0) = 1, sec(180) = -1 cot(90)= 0, cot(270) = 0 The rest of them: tan(90), tan (270) cosec(0), cosec(180) sec(90), sec(270) cot(0), cot(180) are not defined since they entail division by zero.
270 degrees is 3/4 of a turn
270 rule represent a 270 rotation to the left which is very easy
It is (-6, -1).
A rotation of 270 degrees counterclockwise is a transformation that turns a figure around a fixed point by 270 degrees in the counterclockwise direction. This rotation can be visualized as a quarter turn in the counterclockwise direction. It is equivalent to rotating the figure three-fourths of a full revolution counterclockwise.
A rotation of 270 degrees clockwise is equivalent to a rotation of 90 degrees counterclockwise. In a Cartesian coordinate system, this means that a point originally at (x, y) will move to (y, -x) after the rotation. Essentially, it shifts the point three-quarters of the way around the origin in the clockwise direction.
It is (6, 1).
Both will end up on the same place. Using a compass rose as an example: 270 clockwise will point to the west. 90 counterclockwise will also point west.
1
You went 360o in the same direction, so you end up with a circle.
(x,y) to (x,-y). You would keep the x the same, but turn the y negative. This is actually the rule for a 90 degree counterclockwise rotation, but they're the same thing, they would go to the same coordinates.
(x,y) to (x,-y). You would keep the x the same, but turn the y negative. This is actually the rule for a 90 degree counterclockwise rotation, but they're the same thing, they would go to the same coordinates.
180 degrees.
A rotation of 270 degrees counterclockwise about vertex A means that you would turn the point or shape around vertex A in a counterclockwise direction by three-quarters of a full circle. This results in a position that is equivalent to a 90-degree clockwise rotation. The new orientation will place points or vertices in a different location relative to vertex A, effectively shifting them to the left if visualized on a standard Cartesian plane.