PO2 is a polyatomic ion with the name hypophosphite. Its charge is -3. It has 2 less oxygen atoms than phosphate, the "parent" polyatomic, hence the -ite suffix and the hypo- prefix.
PO2 is a polyatomic ion with the name hypophosphite. Its charge is -3. It has 2 less oxygen atoms than phosphate, the "parent" polyatomic, hence the -ite suffix and the hypo- prefix.
PO2(OH)2 is the same as H2PO4^- (note the negative charge). It would be dihydrogen phosphate.
meta phosphorus acid
Assuming the Ka= [H+][PO2-]/[PO3-] and that PO3=PO2- then we can safely assume Ka= [H+][PO2-]/[PO2-] and so Ka= [H+][PO2-]/[PO2-] Ka=[H+] since the Ka of Phosphoric acid is equal to 7.5x10-3 then we can take -log(7.5x10-3) to find the pH=2.12
The false statement is C. The empirical formula is PO2.
Some ions of phosphorous are: - phosphate, (PO4)3- - phosphite, (PO3)2- - phosphoros, (PO3)3- - hypophosphoros, (PO2)3-
The ion PO2 3- is called the phosphate ion. It consists of one phosphorus atom bonded to three oxygen atoms with an overall charge of -3. It is commonly found in biological systems and plays a crucial role in processes like energy transfer and DNA synthesis.
The ionic compound Zn3(PO2)2 is named zinc phosphite.
Rather than a blood vessel with a value of 104mm Hg for Po2, it is alveolar gas thatt has a Po2 of 104 mm Hg
PO2 in blood is the amount of gases in your blood. In medical terms, this is commonly called the Alveolar-arterial.
In pulmonary arteries, PO2 is around 40 mmHg and PCO2 is around 46 mmHg. In pulmonary veins, PO2 is around 100 mmHg and PCO2 is around 40 mmHg. In systemic arteries, PO2 is around 100 mmHg and PCO2 is around 40 mmHg. In systemic veins, PO2 is around 40 mmHg and PCO2 is around 46 mmHg.
Yes, hemoglobin is affected by the partial pressure of oxygen (pO2). As pO2 increases, hemoglobin's affinity for oxygen also increases, facilitating oxygen binding in the lungs. Conversely, in tissues where pO2 is lower, hemoglobin releases oxygen more readily. This relationship is described by the oxygen-hemoglobin dissociation curve, which illustrates how hemoglobin's saturation with oxygen changes with varying pO2 levels.