When Thomas Hunt Morgan mated a white-eyed male fruit fly (Drosophila melanogaster) with a red-eyed female, he observed that all the offspring (F1 generation) had red eyes. This indicated that the red eye trait was dominant over the white eye trait. When the F1 generation was interbred, the F2 generation showed a ratio of approximately 3 red-eyed flies to 1 white-eyed fly, demonstrating the inheritance patterns of sex-linked traits.
When Morgan mated fruit flies with the genotypes XrYr (homozygous for recessive traits on X and Y chromosomes) and XrY (heterozygous for the X chromosome), he observed a 1:1 ratio of offspring. The offspring would consist of XrYr and XrY genotypes, leading to a mix of phenotypes that correspond to the traits associated with those alleles. This experiment helped elucidate the principles of sex-linked inheritance in fruit flies.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
The class of a fruit bat is Mammalia.
For plants, that is a process called double fertilization. After this process, the primary endosperm (3n) developed to form the fruit that covered and protected the seed(2n). The primary endosperm is the result of fertilization of one male gamete and two polar nuclei in the ovary. Thus, it is triploid.
it is a fruit
thomas hunt morgan studied fruit flies. :)
When Thomas Hunt Morgan mated fruit flies with specific genotypes, he observed deviations from the expected Mendelian ratios, indicating that certain traits were linked on the same chromosome. This led to the discovery of genetic linkage and the concept of gene mapping.
All the offspring had red eyes. The white eye trait is recessive, so it did not appear in the offspring.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
Blood Orange.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
yes
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.