NADH and FADH2.
NAD
Most energy that enters the electron transport chain comes from the oxidation of glucose during glycolysis and the citric acid cycle. This energy is then transferred to the electron carriers NADH and FADH2, which deliver the electrons to the electron transport chain to generate ATP through oxidative phosphorylation.
FAD and NADHThe pick up electrons, with attendant protons, to carry into the transport chain and become,FADH and NADH2
Electrons are brought to the electron transport chain by high-energy electron carriers such as NADH and FADH2. These carriers donate electrons to the chain, which is then used to generate ATP through oxidative phosphorylation.
The electrons that move between photosystems in photosynthesis are energized by sunlight and carried by electron carrier molecules such as plastocyanin and ferredoxin. These high-energy electrons are transferred through a series of redox reactions in the electron transport chain to generate ATP and NADPH for the light-dependent reactions of photosynthesis.
The purpose of electron carriers such as NADH and FADH2 is to dump electrons at the electron transport chain. This creates a proton gradient and allows oxidative phosphorylation to take place.
Excited electrons are transferred to an electron transport chain.
The spent electrons from electron transport in aerobic respiration are transferred to oxygen molecules to form water. This final step of the electron transport chain generates energy and is essential for the production of ATP in the process of oxidative phosphorylation.
The electron transport chain is a series of special molecules in the mitochondrion that receives the high-energy electrons from the carriers.
To use energy from the passing of electrons in electron carriers into a high concentration of hydrogen ions
High energy electron carriers, such as NADH and FADH2, play a crucial role in cellular respiration by transferring electrons to the electron transport chain. This process generates ATP, the cell's main energy source, through a series of redox reactions.
NADH and FADH2 act as electron carriers in metabolic pathways, transferring electrons to the electron transport chain to generate ATP through oxidative phosphorylation. These molecules play a crucial role in the production of energy in the form of ATP during cellular respiration.