answersLogoWhite

0


Best Answer

positive charge

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: A what will move in the direction of the arrows on the electric field lines?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Does electric field and electric field lines connected?

Yes. An electric field is represented by electric field lines. Electric field lines are a visual representation of the strength and direction of an electric field in a region of space. In the vicinity of any charge, there is an electric field and the strength of the electric field is proportional to the force that a test charge would experience if placed at the point. (That is a matter of definition of electric field.) Mother nature produces electric fields, but humans can not see electric fields. Humans invented the idea of field lines to create a mental picture of the field. The two most common ways are to draw lines in space or to draw a collection of arrows in space. In the case of arrows, they are vector representations of the strength and direction of the electric field at the point in space where each arrow is drawn. Representing an electric field (and this works with other fields also) with lines is a sophisticated and time honored tradition. The density of lines in any region of space is proportional to the strength (magnitude) of the field in that region of space. The direction of the field is along the direction of the line at each position on each of the lines. In such a graphical representation the field direction goes out from positive charge and in towards negative charge and the visualization usually has some indication of the sign of charge or direction of the field to give the information about direction of the vector field represented by the field lines. There is a small caveat. It is not only charge that can produce electric fields. An electric field can be produced by a changing magnetic field. This is technologically important (since electric motors work on this principle) and scientifically fascinating, requiring a somewhat more sophisticated aspect of electromagnetic theory, but ultimately the electric field or electric flux can be visualized with lines (or arrows) in a manner exactly as is done for stationary charges.


Electric field lines show the strength and what of an electric field?

Direction and electric flux density. Representing an electric field (and this works with other fields also) with lines is a sophisticated and time honored tradition. The density of lines in any region of space is proportional to the strength (magnitude) of the field in that region of space. The direction of the field is along the direction of the line at each position on each of the lines. In such a graphical representation the field direction goes out from positive charge and in towards negative charge and the visualization usually has some indication of the sign of charge or direction of the field to give the information about direction of the vector field represented by the field lines.


Are electric field lines real?

No, they only help us understand electric fields.


Is the direction of the electric force on a charge is tangent to the field line?

yes,the direction of electric force on a charge is tangent of field lines.


An electric field has?

An electric field has both magnitude and direction and can be represented by lines of force, or field lines, that start on positive charges and terminate on negative charges.

Related questions

Does electric field and electric field lines connected?

Yes. An electric field is represented by electric field lines. Electric field lines are a visual representation of the strength and direction of an electric field in a region of space. In the vicinity of any charge, there is an electric field and the strength of the electric field is proportional to the force that a test charge would experience if placed at the point. (That is a matter of definition of electric field.) Mother nature produces electric fields, but humans can not see electric fields. Humans invented the idea of field lines to create a mental picture of the field. The two most common ways are to draw lines in space or to draw a collection of arrows in space. In the case of arrows, they are vector representations of the strength and direction of the electric field at the point in space where each arrow is drawn. Representing an electric field (and this works with other fields also) with lines is a sophisticated and time honored tradition. The density of lines in any region of space is proportional to the strength (magnitude) of the field in that region of space. The direction of the field is along the direction of the line at each position on each of the lines. In such a graphical representation the field direction goes out from positive charge and in towards negative charge and the visualization usually has some indication of the sign of charge or direction of the field to give the information about direction of the vector field represented by the field lines. There is a small caveat. It is not only charge that can produce electric fields. An electric field can be produced by a changing magnetic field. This is technologically important (since electric motors work on this principle) and scientifically fascinating, requiring a somewhat more sophisticated aspect of electromagnetic theory, but ultimately the electric field or electric flux can be visualized with lines (or arrows) in a manner exactly as is done for stationary charges.


Electric field lines show the strength and what of an electric field?

Direction and electric flux density. Representing an electric field (and this works with other fields also) with lines is a sophisticated and time honored tradition. The density of lines in any region of space is proportional to the strength (magnitude) of the field in that region of space. The direction of the field is along the direction of the line at each position on each of the lines. In such a graphical representation the field direction goes out from positive charge and in towards negative charge and the visualization usually has some indication of the sign of charge or direction of the field to give the information about direction of the vector field represented by the field lines.


What is meant by electric field intencity?

An electric field can be represented diagrammatically as a set of lines with arrows on, called electric field-lines, which fill space. Electric field-lines are drawn according to the following rules: The direction of the electric field is everywhere tangent to the field-lines, in the sense of the arrows on the lines. The magnitude of the field is proportional to the number of field-lines per unit area passing through a small surface normal to the lines. Thus, field-lines determine the magnitude, as well as the direction, of the electric field. In particular, the field is strong at points where the field-lines are closely spaced, and weak at points where they are far apart. Electric Field intensity It was stated that the electric field concept arose in an effort to explain action-at-a-distance forces. All charged objects create an electric field which extends outward into the space which surrounds it. The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object. In this section of Lesson 4, we will investigate electric field from a numerical viewpoint - the electric field strength. An electric field can be represented diagrammatically as a set of lines with arrows on, called electric field-lines, which fill space. Electric field-lines are drawn according to the following rules: The direction of the electric field is everywhere tangent to the field-lines, in the sense of the arrows on the lines. The magnitude of the field is proportional to the number of field-lines per unit area passing through a small surface normal to the lines. Thus, field-lines determine the magnitude, as well as the direction, of the electric field. In particular, the field is strong at points where the field-lines are closely spaced, and weak at points where they are far apart. Electric Field intensity It was stated that the electric field concept arose in an effort to explain action-at-a-distance forces. All charged objects create an electric field which extends outward into the space which surrounds it. The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object. In this section of Lesson 4, we will investigate electric field from a numerical viewpoint - the electric field strength.


Are electric field lines real?

No, they only help us understand electric fields.


Is the direction of the electric force on a charge is tangent to the field line?

yes,the direction of electric force on a charge is tangent of field lines.


An electric field has?

An electric field has both magnitude and direction and can be represented by lines of force, or field lines, that start on positive charges and terminate on negative charges.


Where do electric field lines point?

The electric field lines are directed away from a positive charge and towards a negative charge so that at any point , the tangent to a field line gives the direction of electric field at that point.


Electric field lines are drwan with arrows to show the directions of the force on an?

Test charge, I think is the answer you are looking for.


What is the importance of electrical force?

An electric field can be represented diagrammatically as a set of lines with arrows on, called electric field-lines, which fill space. Electric field-lines are drawn according to the following rules: The direction of the electric field is everywhere tangent to the field-lines, in the sense of the arrows on the lines. The magnitude of the field is proportional to the number of field-lines per unit area passing through a small surface normal to the lines. Thus, field-lines determine the magnitude, as well as the direction, of the electric field. In particular, the field is strong at points where the field-lines are closely spaced, and weak at points where they are far apart. Electric Field intensity It was stated that the electric field concept arose in an effort to explain action-at-a-distance forces. All charged objects create an electric field which extends outward into the space which surrounds it. The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object. In this section of Lesson 4, we will investigate electric field from a numerical viewpoint - the electric field strength. An electric field can be represented diagrammatically as a set of lines with arrows on, called electric field-lines, which fill space. Electric field-lines are drawn according to the following rules: The direction of the electric field is everywhere tangent to the field-lines, in the sense of the arrows on the lines. The magnitude of the field is proportional to the number of field-lines per unit area passing through a small surface normal to the lines. Thus, field-lines determine the magnitude, as well as the direction, of the electric field. In particular, the field is strong at points where the field-lines are closely spaced, and weak at points where they are far apart. Electric Field intensity It was stated that the electric field concept arose in an effort to explain action-at-a-distance forces. All charged objects create an electric field which extends outward into the space which surrounds it. The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object. In this section of Lesson 4, we will investigate electric field from a numerical viewpoint - the electric field strength.


How closely packed the electric field lines are indicates the strength of the electric field?

true


Electric field lines point in the opposite direction charges would move if they were in the field?

positive


What do the electric field lines look like when the electric field has the same strength at all points in a region?

All of the lines, in the field are uniformly spaced, because the fartherapartthe lines are, the weaker the field is, but if the field is the same all around, then the lines are also the same, all around the field.