answersLogoWhite

0


Best Answer

Yes

User Avatar

Wiki User

12y ago
This answer is:
User Avatar
User Avatar

Leanna Nichole Brown

Lvl 1
2y ago
Mine is asking me to “explain” the answer… so what can I say besides yes as the answer!?

Add your answer:

Earn +20 pts
Q: Could a plant cell produce ATP through chemiosmosis if the thylakoid membrane was leaky with regards to protons?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

Where else in chloroplasts does chemiosmosis translocates protons from?

stroma, after water is photolysised on thylakoid membrane


The process that relies on a concentration gradient of protons?

Chemiosmosis, the diffusion of hydrogen ions on a selectively permeable membrane.


What is the role if ATP synthase in photosynthesis?

The pigment molecules and electron transport chains involved in the light-dependent reactions of photosynthesis are embedded in the thylakoid membrane. As energy is released from electrons traveling through the chain of acceptors, it is used to pump protons (that is, H+ ions) from the stroma of the chloroplast across the thylakoid membrane and into the center of the thylakoid. Thus, protons accumlate within the thylakoids, lowering the pH of the thylakoid interior and making it more acidic. A proton gradient possesses potential energy that can be used to form ATP.Protons are prevented from diffusing out of the thylakoid because the thylakoid membrane is impermeable to protons except at certain points bridged by an enzyme called ATP synthase. This protein extends across the thylakoid membrane and forms a channel through which protons can leave the thylakoid. As the protons pass through ATP synthetase, energy is released, and this energy is tapped by ATP synthase to form ATP from ADP and inorganic phosphate. The coupling of ATP synthesis to a protein gradient formed by energy released during electron transport is called chemiosmosis.


Why is water split during the light reactions?

The water splitting step in photosynthesis is critical as a source of hydrogen ions (protons). These provide essential chemical energy to drive later chemical reactions.


What is the function of lumen?

The thylakoid lumen is the compartment bounded by the thylakoid membrane. It plays a vital role for photophosphorylation during photosynthesis. During the light-dependent reaction, protons are pumped across the thylakoid membrane into the lumen making it acidic down to pH 4.

Related questions

Where else in chloroplasts does chemiosmosis translocates protons from?

stroma, after water is photolysised on thylakoid membrane


The process that relies on a concentration gradient of protons?

Chemiosmosis, the diffusion of hydrogen ions on a selectively permeable membrane.


What is the of ATP synthase in photosynthesis?

The pigment molecules and electron transport chains involved in the light-dependent reactions of photosynthesis are embedded in the thylakoid membrane. As energy is released from electrons traveling through the chain of acceptors, it is used to pump protons (that is, H+ ions) from the stroma of the chloroplast across the thylakoid membrane and into the center of the thylakoid. Thus, protons accumlate within the thylakoids, lowering the pH of the thylakoid interior and making it more acidic. A proton gradient possesses potential energy that can be used to form ATP.Protons are prevented from diffusing out of the thylakoid because the thylakoid membrane is impermeable to protons except at certain points bridged by an enzyme called ATP synthase. This protein extends across the thylakoid membrane and forms a channel through which protons can leave the thylakoid. As the protons pass through ATP synthetase, energy is released, and this energy is tapped by ATP synthase to form ATP from ADP and inorganic phosphate. The coupling of ATP synthesis to a protein gradient formed by energy released during electron transport is called chemiosmosis.


What is the role of synthase in photosynthesis?

The pigment molecules and electron transport chains involved in the light-dependent reactions of photosynthesis are embedded in the thylakoid membrane. As energy is released from electrons traveling through the chain of acceptors, it is used to pump protons (that is, H+ ions) from the stroma of the chloroplast across the thylakoid membrane and into the center of the thylakoid. Thus, protons accumlate within the thylakoids, lowering the pH of the thylakoid interior and making it more acidic. A proton gradient possesses potential energy that can be used to form ATP.Protons are prevented from diffusing out of the thylakoid because the thylakoid membrane is impermeable to protons except at certain points bridged by an enzyme called ATP synthase. This protein extends across the thylakoid membrane and forms a channel through which protons can leave the thylakoid. As the protons pass through ATP synthetase, energy is released, and this energy is tapped by ATP synthase to form ATP from ADP and inorganic phosphate. The coupling of ATP synthesis to a protein gradient formed by energy released during electron transport is called chemiosmosis.


What moves across the inner mitochondrial membrane to synthesize ATP during chemiosmosis?

protons


What is the role of ATP synthase (synthetase)?

The pigment molecules and electron transport chains involved in the light-dependent reactions of photosynthesis are embedded in the thylakoid membrane. As energy is released from electrons traveling through the chain of acceptors, it is used to pump protons (that is, H+ ions) from the stroma of the chloroplast across the thylakoid membrane and into the center of the thylakoid. Thus, protons accumlate within the thylakoids, lowering the pH of the thylakoid interior and making it more acidic. A proton gradient possesses potential energy that can be used to form ATP.Protons are prevented from diffusing out of the thylakoid because the thylakoid membrane is impermeable to protons except at certain points bridged by an enzyme called ATP synthase. This protein extends across the thylakoid membrane and forms a channel through which protons can leave the thylakoid. As the protons pass through ATP synthetase, energy is released, and this energy is tapped by ATP synthase to form ATP from ADP and inorganic phosphate. The coupling of ATP synthesis to a protein gradient formed by energy released during electron transport is called chemiosmosis.


What is the role if ATP synthase in photosynthesis?

The pigment molecules and electron transport chains involved in the light-dependent reactions of photosynthesis are embedded in the thylakoid membrane. As energy is released from electrons traveling through the chain of acceptors, it is used to pump protons (that is, H+ ions) from the stroma of the chloroplast across the thylakoid membrane and into the center of the thylakoid. Thus, protons accumlate within the thylakoids, lowering the pH of the thylakoid interior and making it more acidic. A proton gradient possesses potential energy that can be used to form ATP.Protons are prevented from diffusing out of the thylakoid because the thylakoid membrane is impermeable to protons except at certain points bridged by an enzyme called ATP synthase. This protein extends across the thylakoid membrane and forms a channel through which protons can leave the thylakoid. As the protons pass through ATP synthetase, energy is released, and this energy is tapped by ATP synthase to form ATP from ADP and inorganic phosphate. The coupling of ATP synthesis to a protein gradient formed by energy released during electron transport is called chemiosmosis.


What cell does chemiosmosis take place in?

Chemiosmosis occurs with those protons diffuse back, out of the intermembrane space, across the inner mitochondrial membrane, back into the matrix: as they do so, they pass through the membrane spannning ATP synthases which make ATP from ADP + Pi.


What releases energy that is used to pump hydrogen ions from the stroma into the thylakoid compartment?

The electron transport chain releases energy in order to pump protons (hydrogen ions) from the stroma into the thylakoid compartment, creating a proton gradient within the thylakoid membrane.


What is the function of a lumen?

The thylakoid lumen is the compartment bounded by the thylakoid membrane. It plays a vital role for photophosphorylation during photosynthesis. During the light-dependent reaction, protons are pumped across the thylakoid membrane into the lumen making it acidic down to pH 4.


Why is water split during the light reactions?

The water splitting step in photosynthesis is critical as a source of hydrogen ions (protons). These provide essential chemical energy to drive later chemical reactions.


What is the function of lumen?

The thylakoid lumen is the compartment bounded by the thylakoid membrane. It plays a vital role for photophosphorylation during photosynthesis. During the light-dependent reaction, protons are pumped across the thylakoid membrane into the lumen making it acidic down to pH 4.