In an ideal gas molecules interact only elastically.
Ideal gases are gases with negligible intermolecular forces and molecular volumes. Real gases have intermolecular forces and have definite volumes at room temperature and pressure (RTP).
- Weak intermolecular forces -Low density
A real gas is a type of gas that is different than an ideal gas. They have completely different interactions between their molecules.
For an ideal gas, there is assumed to be no force of attraction between molecules. This assumption allows for simplification of the gas behavior under certain conditions, such as low pressure and high temperature. In reality, real gases do experience weak forces of attraction between molecules, but these are considered negligible in the ideal gas model.
The particles in a real gas deviate from ideal gas behavior due to interactions between the particles. In an ideal gas, the particles are assumed to have no volume and no interactions with each other. In a real gas, the particles have volume and can interact through forces such as van der Waals forces. These interactions can cause the gas to deviate from ideal behavior, especially at high pressures and low temperatures.
The pressure exerted by a real gas is less than that of an ideal gas because real gases have intermolecular forces that cause them to deviate from ideal behavior. These forces result in the gas particles being closer together and experiencing attractive forces, which reduces the force with which they collide with the walls of the container, thus lowering the pressure.
Ideal gases can be explained by the Kinetic Molecular Theory: 1) no attraction between gas particles 2) volume of individual gas particles are essentially zero 3) occupy all space available 4) random motion 5) the average kinetic energy is directly proportional to Kelvin Real gases has volume and attraction exists between gas particles. No gas behaves entirely ideal. Real gases act most ideal when temperature is is high and at low pressure.
That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.
low temperature, Strong intermolecular forces
Ideal gas law states that there are no inter molecular attractions between gas molecules and that ideal gas does not occupy space therefore having no volume. However, a real gas does have intermolecular attractions and does have a volume.
A real gas behaves most like an ideal gas when it is at low pressure and high temperature.
A real gas behaves most like an ideal gas at high temperatures and low pressures.