No. Convection currents are the result of a temperature difference between one depth and another in fluid.
The heat driving convection currents in the asthenosphere primarily comes from the Earth's internal heat. This heat is generated through the radioactive decay of elements in the Earth's mantle and core. The flow of this heat causes the asthenosphere to partially melt and create convection currents that drive the movement of tectonic plates.
Which best explains the relationship between ocean currents and convection currents?(1 point) Responses Convection currents join with the Coriolis effect to create the winds that drive ocean currents. Convection currents join with the Coriolis effect to create the winds that drive ocean currents. Ocean currents rely on warm convection currents to strength the Coriolis effect. Ocean currents rely on warm convection currents to strength the Coriolis effect. Ocean currents create a Coriolis effect that increases convection currents. Ocean currents create a Coriolis effect that increases convection currents. Convection currents use the Coriolis effect to generate ocean currents.
The difference in temperature and density is the cause of convection currents in the earths mantle. Convection currents are the flow that transfers heat within a fluid.
The difference in temperature and density is the cause of convection currents in the earths mantle. Convection currents are the flow that transfers heat within a fluid.
Convection currents transfer heat from Earth's core to the mantle, causing the mantle material to flow and create movement in the lithosphere. This movement generates heat due to friction and pressure. So, convection currents help distribute heat within Earth's interior rather than produce it.
No. Convection currents are the circular motion of earth's wind. If the earth did not rotate, convection currents would not be. Does that make sense?
Convection currents.
The difference in temperature and density is the cause of convection currents in the earths mantle. Convection currents are the flow that transfers heat within a fluid.
convection
When heat is removed from a fluid, convection currents will slow down and eventually stop. This is because convection currents are driven by temperature differences within the fluid, and when the fluid reaches a uniform temperature, the driving force for convection diminishes.
If the heat source is removed, convection currents will eventually stop because there is no longer a temperature difference to drive the circulation of the fluid. As the fluid cools down to the surrounding temperature, the convection currents will gradually slow down and dissipate.
Convection currents.