Yep they are called lines of flux, I believe. While invisible to the naked eye, like wind, we can see their effects. If you have iron shavings and a bar magnet, place the bar magnet on a piece of paper, then sprinkle the iron shavings all over the paper. The vast majority of them should line up along the lines of flux between the north and south pole of the magnet.
No actual 'lines' exist, but it is a useful way of describing a magnetic field, as it represents the direction the north pole of a magnet would move if it was free to do so.
Magnetic field
The "lines" of latitude, longitude, reasoning, electric fields, and magnetic fields are imaginary.
A magnetic pole is where the magnetic effect is greatest.
Magnetic poles are always found in pairs (North and South), unlike electric charges which can exist independently. Magnetic poles also do not exist as isolated charges, while electric charges can be found separately. Additionally, magnetic charges do not exist as distinct entities like electric charges.
Magnetic lines do not cross each other. it is natural phenomenon.AnswerMagnetic 'lines of force' do not actually exist. They simply represent a 'model' which is used to explain the behaviour of a magnetic field through the use of something we can easily understand. In this case, one of the conditions for this model to apply is that these imaginary lines of force cannot intersect.The lines do not cross because the field can not have two values at one point. There is a basic equation that says that the lines always form closed loops:div B = 0, one of Maxwell's equations describing a property of the magnetic flux density B.
Mechanical force is the force exerted by a machine.
A single force cannot exist because forces are interactions between two or more objects. For a force to be present, there must be an object or system exerting the force and another object or system experiencing the force. It is this interaction that defines and characterizes a force.
A magnetic force is the exertion of a force on a magnetic object due to the presence of a magnetic field. The strength and direction of the magnetic force depend on the strength and orientation of the magnetic field. In essence, a magnetic field produces the magnetic force that acts on magnetic objects within its influence.
Magnetic force is the force experienced by a magnetic object when placed in a magnetic field. The strength and direction of the force depend on the characteristics of the object and the field. The magnetic field is the region around a magnetic object or current-carrying conductor where another magnetic object experiences a magnetic force.
Magnetic force is the force exerted between magnetic poles, producing magnetization of force, either of attraction or of repulsion.
Typically, an electric current creates a magnetic force. Also, magnetic domains aligned correctly and properly can cause a magnetic force.