yes it does
DNA replication requires the aid of enzymes. Enzymes like DNA polymerase and helicase are crucial for unwinding the DNA double helix, synthesizing new DNA strands, and proofreading and repairing any errors that may occur during replication. Without these enzymes, DNA replication cannot proceed effectively and accurately.
DNA replication is a semi-conservative process where a DNA molecule makes a copy of itself. It requires enzymes such as DNA polymerase, dNTPs (deoxynucleotide triphosphates), a template DNA strand, and primer to initiate the process.
1 strand of naked genomic DNA cut by certain enzymes.
restriction enzymes
Restriction enzymes and DNA ligase are necessary to make recombinant DNA. Restriction enzymes are used to cut the DNA at specific sequences, while DNA ligase is used to join together pieces of DNA from different sources.
Restriction enzymes are used to cut DNA molecules in recombinant DNA research. These enzymes recognize specific DNA sequences and cleave the DNA at those sites, allowing scientists to splice DNA fragments from different sources together to create recombinant DNA molecules.
DNA replication is controlled by specific enzymes, such as DNA polymerase, helicase, and primase, along with other regulatory proteins. The process is tightly regulated at different checkpoints to ensure accurate copying of the genetic material. Additionally, the initiation of DNA replication requires specific sequences called origins of replication.
DNA replication, repair, and recombination all require DNA synthesis. These processes involve enzymes that copy existing DNA strands to produce new DNA molecules. Additionally, DNA synthesis is necessary for cell division and growth.
There are many other things.Some are matrix,DNA,enzymes etc
Unwind part of the original DNA molecule :)
DNA is build from another template DNA molecule using DNA polymerase, among other enzymes.
Enzymes that cut DNA at specific sites to form restriction fragments are called restriction endonucleases or restriction enzymes. These enzymes recognize specific DNA sequences and cleave the DNA at or near these sequences, generating DNA fragments with defined ends.