answersLogoWhite

0

Factors Influencing Creep

Concrete that exhibits high shrinkage generally also shows a high creep, but how the two phenomena are connected is still not understood. Evidence suggests that they are closely related. When hydrated cement is completely dried, little or no creep occurs; for a given concrete the lower the relative humidity, the higher the creep.

Strength of concrete has a considerable influence on creep and within a wide range creep is inversely proportional to the strength of concrete at the time of application of load. From this it follows that creep is closely related to the water-cement ratio. There is no doubt also that the modulus of elasticity of aggregate controls the amount of creep that can be realized and concretes made with different aggregates exhibit creep of varying magnitudes.

Experiments have shown that creep continues for a very long time; detectable changes have been found after as long as 30 years. The rate decreases continuously, however, and it is generally assumed that creep tends to a limiting value. It has been estimated that 75 per cent of 20-year creep occurs during the first year.

Effects of Creep

Creep of plain concrete does not by itself affect strength, although under very high stresses creep hastens the approach of the limiting strain at which failure takes place. The influence of creep on the ultimate strength of a simply supported, reinforced concrete beam subjected to a sustained load is insignificant, but deflection increases considerably and may in many cases be a critical consideration in design. Another instance of the adverse effects of creep is its influence on the stability of the structure through increase in deformation and consequent transfer of load to other components. Thus, even when creep does not affect the ultimate strength of the component in which it takes place, its effect may be extremely serious as far as the performance of the structure as a whole is concerned.

The loss of prestress due to creep is well known and accounted for the failure of all early attempts at prestressing. Only with the introduction of high tensile steel did prestressing become a successful operation. The effects of creep may thus be harmful. On the whole, however, creep unlike shrinkage is beneficial in relieving stress concentrations and has contributed to the success of concrete as a structural material.

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

What is the modular ratio of m20?

The modular ratio is the ratio of the modulus of elasticity of steel to the modulus of elasticity of concrete. For M20 concrete, which typically has a characteristic compressive strength of 20 MPa, the modulus of elasticity is generally assumed to be around 25 GPa. If we consider the modulus of elasticity of steel to be approximately 200 GPa, the modular ratio (n) can be calculated as n = E_steel / E_concrete, resulting in a modular ratio of about 8. This means that the stiffness of steel is roughly eight times that of M20 concrete.


What is the ypung modulus for concrete?

The modulus of elasticity of concrete is denoted by Ec .Ec = 5000 sqrt fck as per IS standardswhere, fck- The compressive strength of concrete at 28 days in N/mm2 .


Is Young's Modulus the same as Modulus of Elasticity?

Yes, Young's Modulus is the same as Modulus of Elasticity.


Is the modulus of elasticity the same as Young's modulus?

Yes, the modulus of elasticity is the same as Young's modulus.


What is the elasticity modulus of M25 concrete?

5000x (fck)*power(1/2) =5000x5 =25000 N/mm2


What is the modulus of elasticity in stretched wire?

Young's modulus


What is the dimension of modulus of elasticity?

the dimensions of Young's Modulus of Elasticity = (M).(L)^(-1).(T)^(-2)


What is modular ratio of concrete?

The modular ratio of concrete is a measure used in structural engineering to relate the elastic moduli of concrete to that of reinforcing steel. It is defined as the ratio of the modulus of elasticity of steel to the modulus of elasticity of concrete. This ratio helps engineers determine how much the two materials will deform under load and is crucial for analyzing the behavior of reinforced concrete structures. Typically, the modular ratio for concrete is around 8 to 12, depending on the specific types of concrete and steel used.


What is the value of modulus of elasticity of concrete?

According to the "Structural Engineer's Pocket Book" concrete commonly has a modulus of elasticity in the range of 17 - 30 GPa.The exact value of modulus of elasticity depends on the concrete's uniaxial compressive strength after a cure time of 28 days.These values are related using the following:Emc = 4700 x sqrt(UCS)Where:Emc = Elastic Modulus (MPa)UCS = Uniaxial Compressive Strength of Concrete after 28 days (MPa).Source:Cobb, F. (2009). Structural Engineer's Pocket Book, Second Edition. London, Butterworth-Heinemann.


What is the coefficient of a materials elasticity?

Young's modulus


What is the value of the long term modulus of elasticity of grade 35 concrete?

According to IS 456-2000 the value is square root of 5700fck


Is the tensile modulus the same as the modulus of elasticity?

Yes, the tensile modulus is the same as the modulus of elasticity. Both terms refer to a material's ability to resist deformation under tensile stress.