The total mass of the compounds remain constant.
A chemical reaction need an activation energy to start.
Do it yourself idiot.
duuh...of course it does
Energy can either decrease or increase during a chemical reaction depending on whether it is an exothermic reaction (energy is released) or an endothermic reaction (energy is absorbed). In an exothermic reaction, energy is released in the form of heat, and in an endothermic reaction, energy is absorbed from the surroundings.
Amount of energy because it can not be created or destroyed.
Catalysis is the action to increase the reaction rate of a chemical reaction using substances called catalysts which are not transformed during this reaction.
The temperature increases when energy is released during a chemical reaction.
Increasing the mass of magnesium in a reaction with hydrochloric acid will not directly affect the temperature of the reaction. The temperature will be determined by the amount of heat released or absorbed during the reaction, which depends on the specific reaction and the initial conditions.
In a chemical reaction the limiting reactant is the reactant that there is the least of in the reaction; it determines the amount of product formed. In a chemical reaction it is the reactant that gets completely "used up"
The heat of reaction is the amount of heat energy released or absorbed during a chemical reaction. It is a measure of the reaction's energy change. The relationship between the heat of reaction and a chemical reaction is that the heat of reaction indicates whether a reaction is exothermic (releases heat) or endothermic (absorbs heat). This information helps us understand the energy changes that occur during the reaction.
A catalyst undergoes no chemical change during a chemical reaction.
The enthalpy change for a chemical reaction exactly as it is written is known as the standard enthalpy of reaction (∆H°). It represents the amount of heat exchanged with the surroundings at constant pressure during a reaction happening under standard conditions (typically at 298 K and 1 atm pressure).