A non-polar covalent bond.
Inner core electrons are electrons that shield attraction between protons and valence electrons.
Valence electrons are electrons on the outermost shell/orbitals. Sheilding electrons are inner electrons that block valence electrons from protons causing less attraction.
chemical deviation
The force of attraction between the atom's nucleus and its valence electrons are the least. Hence valence electrons are lost easily.
Cations are formed by the loss of electrons, anions are formed by the gain of electrons. The force of attraction between cations and anions results in ionic bond.
The valence electrons experience the weakest attraction to the nucleus in an atom. This is because they are the outermost electrons and are furthest from the positively charged nucleus, making their attraction relatively weaker compared to the inner electrons.
Strontium is larger in size compared to calcium due to more electron shells, making it easier for strontium to lose valence electrons farther from the nucleus. This results in weaker attraction between the valence electrons and the nucleus, leading to easier electron loss in strontium compared to calcium.
Valence electrons are further away from the nucleus and experience less attraction to the positively charged protons in the nucleus compared to core electrons. This makes valence electrons easier to remove from an atom. Core electrons are located closer to the nucleus and are more strongly attracted to the nucleus, requiring more energy to remove them from the atom.
It is called shielding or screening effect. Inner electrons shield the valence electrons from the positive charge of the nucleus, reducing the attractive force between them.
Elements like calcium located toward the top of a group have a high attraction for their valence electrons because they have a relatively low atomic size and therefore a stronger effective nuclear charge. This results in a greater tendency for these elements to attract and hold onto their valence electrons.
Elements at the bottom of a group in the periodic table have a lower attraction for their valence electrons primarily due to increased atomic size and the shielding effect. As you move down a group, additional electron shells are added, which increases the distance between the nucleus and the valence electrons. This increased distance diminishes the effective nuclear charge experienced by the valence electrons. Additionally, inner electron shells shield the valence electrons from the full effect of the positive charge of the nucleus, further reducing the attraction.
Elements located toward the bottom of a group have a lower attraction for their valence electrons primarily due to increased atomic size and electron shielding. As you move down a group, additional electron shells are added, which increases the distance between the nucleus and the valence electrons. This greater distance, coupled with increased electron shielding from inner electrons, reduces the effective nuclear charge felt by the valence electrons, leading to weaker attraction. Consequently, these elements are more likely to lose their valence electrons in chemical reactions.