At resonance,Xl=Xc subsituting the values we get resonant frequency and impedance Z=R it is high and power is max I2 R
What is meant by resonance and explain the series and parallel resonance? by kathiresan
Series resonance is called voltage resonance because at resonance frequency in a series RLC circuit, the impedance of the inductor and capacitor cancel each other out, resulting in minimum impedance. This causes the total voltage across the circuit to be maximized, leading to a peak in voltage across the components at resonance. This phenomenon is known as voltage resonance because it results in a maximum voltage across the circuit at that specific frequency.
In series resonance, the inductance and the capacitance are connected in series, but in parallel resonance they are connected in parallel. In series resonance, at an input signal with a frequency equal to resonance frequency, the total impedance of both inductive and capacitive elements together is zero (or they appear as short circuits) unlike the parallel resonance case in which it is infinite and they appear as an open circuit.
hello how r u?
Because the only opposition to current flow is the resistance of the circuit. This is because, at resonance, the vector sum of the inductive and capacitive reactances is zero.
When L is doubled and C is halved in a series tuned circuit, the resonance frequency remains unchanged. This is because the resonance frequency of a series tuned circuit is determined by the formula f = 1 / (2π√(LC)), and doubling L and halving C cancels each other out in this formula, resulting in the same resonance frequency.
No, the resonant frequency of a RLC series circuit is only dependant on L and C. R will be the impedance of the circuit at resonance.
Series resonance occurs when a circuit's inductive reactance is equal to its capacitive reactance. The resistance of the circuit is irrelevant.WebRep currentVote noRating noWeight
In an L-C-R AC series circuit, resonance occurs when the capacitive and inductive reactances cancel each other out, resulting in minimum impedance. This causes the current in the circuit to be at its maximum and the power factor to be unity. By measuring the frequency at which resonance occurs, one can determine the values of the inductor, capacitor, and resistor in the circuit.
in series you XL, voltage leads the current, and in Parallel current leads the voltage. so your answer should reflect on this theory.
Because the series resonant circuit has the lowest possible impedance at resonance frequency, thus allowing the AC current to circulate through it. At resonance frequency, XC=XL and XL-XC = 0. Therefore, the only electrical characteristic left in the circuit to oppose current is the internal resistance of the two components. Hence, at resonance frequency, Z = R. Note: This effect is probably better seen with vectors. Clarification: Resonant circuits come in two flavors, series and parallel. Series resonant circuits do have an impedance equal to zero at the resonant frequency. This characteristic makes series resonant circuits especially well suited to be used as basic pass-band filters (acceptors). However, parallel circuits present their maximum impedance at the resonant frequency, which makes them ideal for tuning purposes.
A series resonant circuit has it's reactive components connected in series with each other; while the reactive components, as in a "tank" circuit, are connected in parallel with each other. The resonant series circuit has the capability of producing usable increased voltage levels across each component at resonance, while the resonant tank circuit does not. The resonant parallel, or "tank" circuit; has the dual capability of creating a situation whereby the input amperage level is reduced to minimum while, at the same time, a maximum amount of circulating amperage is created between the two reactive tank components at resonance.