answersLogoWhite

0

in series you XL, voltage leads the current, and in Parallel current leads the voltage. so your answer should reflect on this theory.

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

Why current is maximum in series resonance circuit?

Because the only opposition to current flow is the resistance of the circuit. This is because, at resonance, the vector sum of the inductive and capacitive reactances is zero.


What is a condition for resonance for an electrica circuit with reactive element?

For resonance to occur in an electrical circuit with a reactive element, the reactive element's reactance needs to be equal and opposite to the circuit's impedance. This occurs when the capacitive and inductive reactances cancel out, resulting in a net impedance that is purely resistive. At this point, maximum current flows through the circuit, enhancing certain frequencies.


Why does the resistance in a series resonant circuit have no bearing on the resonant frequency?

Series resonance occurs when a circuit's inductive reactance is equal to its capacitive reactance. The resistance of the circuit is irrelevant.WebRep currentVote noRating noWeight


What happens in series resonance?

The properties of a series alternating-current L-R-C circuit at resonance are:the only opposition to current flow is resistance of the circuitthe current flowing through the circuit is maximumthe voltage across the resistive component of the circuit is equal to the supply voltagethe individual voltages across the inductive and capacitive components of the circuit are equal, but act in the opposite sense to each otherthe voltage appearing across both the inductive and capacitive components of the circuit is zeroif the resistance is low, then the individual voltages appearing across the inductive and capacitive components of the circuit may be significantly higher than the supply voltage


What are the characteristics of a circuit at resonance?

At resonance, a circuit exhibits maximum voltage across the load with minimal impedance, leading to maximum current flow. The inductive and capacitive reactances are equal in magnitude but opposite in phase, resulting in their cancellation. This condition enhances the circuit's ability to select specific frequencies, making it highly efficient for applications like tuning and filtering. Additionally, the circuit's bandwidth is at its narrowest, concentrating energy around the resonant frequency.


Why at resonance the voltage drop across inductance and the voltage drop across capacitance is greater than the source voltage?

This isn't necessarily the case. It depends upon the value of resistance (which, at resonance, determines the current), and the values of the inductive- and capacitive-reactance.At resonance, the impedance of the circuit is equal to its resistance. This is because the vector sum of resistance, inductive reactance, and capacitive reactance, is equal the the resistance. This happens because, at resonance, the inductive- and capacitive-reactance are equal but opposite. Although they still actually exist, individually.If the resistance is low in comparison to the inductive and capacitive reactance, then the large current will cause a large voltage drop across the inductive reactance and a large voltage drop across the capacitive reactance. Because these two voltage drops are equal, but act the opposite sense to each other, the net reactive voltage drop is zero.So, at (series) resonance:a. the circuit's impedance is its resistance (Z = R)b. the current is maximumc. the voltage drop across the resistive component is equal to the supply voltaged. the voltage drop across the inductive-reactance component is the product of the supply current and the inductive reactancee. the voltage drop across the capacitive-reactance component is the product of the supply current and the capacitive reactancef. the voltage drop across both inductive- and capacitive-reactance is zero.


What is meant by resonance in LCR circuit?

a circuit in which inductance L,capacitance C and resistance R are connected in series and the circuit admits maximumum current corresponding to a given frequency of a.c.Another AnswerIn the case of a series circuit, resonance occurs when its inductive reactance is exactly equal to its capacitive reactance. As the vector sum of these two quantities will then be zero, the only opposition to current will be resistance and, so, maximum current will flow through the circuit when resonance occurs. ALL circuits can be made to resonate at what is called their 'resonant frequency' because, as frequency increases, the inductive reactance increases but capacitive reactance falls -so, at some point the two will equal each other, and resonance will occur.In my view resonance means - the condition that exists when the inductive reactance and the capacitive reactance are of equal magnitude, causing electrical energy to oscillate between the magnetic field of the inductor and the electric field of the capacitor.


Why is capacitive voltage higher than inductive voltage in an R-L-C circuit?

It isn't necessarily so. The capacitive voltage is the product of the current and capacitive reactance, while the inductive voltage is the product of the current and the inductive reactance. So it depends whether the capacitive reactance is greater or smaller than the inductive reactance!


Why the impedence of rajector circuit is maximum at resonance?

In a RLC circuit, the impedance is maximum at resonance because the inductive and capacitive reactances are equal in magnitude but opposite in phase. This results in their cancellation, leaving only the resistance in the circuit. At this point, the circuit allows maximum current to flow, as the impedance is minimized. Thus, the maximum impedance occurs when the reactances balance each other out, leading to resonance.


Inductive reactance is equal to capacitive reactance?

yes,they are equal at only one condition i.e. when the circuit containing R,L and C in series or in parallel behave as a purely resistive circuit. This condition occur only at resonance.


A circuit with a lagging current means the circuit is?

Inductive. Voltage (E) leads current (I) in an inductive (L) circuit and current (I) leads voltage (E) in a capacitive (C) circuit. (ELI the ICEman)


How will be phasor diagram if XL equals XC?

When the inductive reactance (XL) equals the capacitive reactance (XC) in an AC circuit, the circuit is said to be in resonance. In a phasor diagram, the voltage phasor across the inductor (V_L) and the voltage phasor across the capacitor (V_C) will be equal in magnitude but opposite in direction, effectively canceling each other out. As a result, the total voltage phasor will be aligned with the current phasor, indicating that the circuit behaves as purely resistive at this point. The current phasor will lead the voltage phasor by 90 degrees in an inductive circuit and lag in a capacitive circuit, but at resonance, they are in phase.