Inductive. Voltage (E) leads current (I) in an inductive (L) circuit and current (I) leads voltage (E) in a capacitive (C) circuit. (ELI the ICEman)
Lagging means the current is out of phase, lagging behind, the voltage. This occurs when there is inductive reactance in the circuit, such as with motors and transformers.
The terms, 'lagging' and 'leading', describe the relationship between a circuit's load current and supply voltage. They describe whether the load current waveform is leading or lagging the supply voltage -always the current, never the voltage. Inductive loads always cause the current to lag the supply voltage, whereas capacitive loads always cause the current to lead the supply voltage.
Only a guess can be made - 35 degrees?
underdampedAnswerA lagging power factor describes a situation in which the load current is lagging the supply voltage. This describes an inductive load, such as a motor, etc.
You must knew there's a sinusoidal wave form for both voltage nd current. That wave form is drawn between voltage/current nd phase angle. Unity: phase angle of voltage nd current matches, irrespective of magnitude leading: phase angle of current leads voltage by an angle lagging: phase angle of voltage leads current or current lags voltage by an angleAnswerThe terms, 'leading' and 'lagging' apply to a.c. loads. 'Leading' means that the load current leads the supply voltage, whereas 'lagging' means that the load current lags the supply voltage. 'Leading' currents occur in capacitive loads, whereas 'lagging' currents occur in inductive loads.'Leading' and 'lagging' refers to what the current is doing, relative to the voltage, never the other way around.
The terms, 'leading' and 'lagging' refer to what the load current is doing, relative to the supply voltage (Phase difference) -never the other way around. If the current is leading the voltage, then the power factor is 'leading'; if the current is lagging the voltage, then the power factor is 'lagging'.
The terms, 'lagging' and 'leading', describe the relationship between a circuit's load current and supply voltage. They describe whether the load current waveform is leading or lagging the supply voltage -always the current, never the voltage. Inductive loads always cause the current to lag the supply voltage, whereas capacitive loads always cause the current to lead the supply voltage.
Current is smallest when the resistance in the circuit is highest, according to Ohm's Law (I = V/R). This means that when the resistance in a circuit is increased, the current flowing through the circuit decreases.
In a purely capacitive circuit, the current and the components have a relationship where the current leads the voltage by 90 degrees. This means that the current and voltage are out of phase in a purely capacitive circuit.
The relationship between capacitance and current in an electrical circuit is that capacitance affects the flow of current in the circuit. A higher capacitance means the circuit can store more charge, which can impact the current flowing through the circuit. The current in a circuit with capacitance can change over time as the capacitor charges and discharges.
A phase diagram in a series LCR circuit shows the phase relationship between current and voltage at different frequencies. It helps in understanding the leading or lagging nature of current with respect to voltage. The diagram typically shows a phase shift between voltage and current, with the direction and magnitude of the shift depending on the circuit's impedance at a given frequency.
For an ideal current source, this means replace the current source with an open circuit. Resistance can then be calculated across the terminals.