the citric acid cycle, the Krebs cycle is a chain of reactions occurring in the mitochondria, through which almost all living cells produce energy in aerobic respiration. It uses oxygen and gives out water and carbon dioxide as products. Here, ADP is converted into ATP. This cycle renders electrons and hydrogen required for electron chain transport.
FADH2 since pyruvic acid is needed to START the Krebs cycle
In the Krebs cycle NAD+ is reduced to NADH. This is one of the electron carriers. Also FAD is reduced to FADH2 which is the other electron carrier produced during the Krebs cycle.
The Krebs cycle runs twice to break down one molecule of glucose.
Similarity: They are both cycles, therefore both have a reactant that s regenerated. In the Krebs Cycle, oxaloacetate is regenerated. In the Calvin cycle, RuBP is regenerated (ribulose 1, 5-bisphosphate). Difference: Glucose is completely broken down in the Krebs Cycle to carbon dioxide, which in the Calvin Cycle, glucose is made as a product.
when oxygen is not present
The Krebs cycle, also known as the citric acid cycle, must run once for each molecule of pyruvate. Since one glucose molecule produces two pyruvate molecules during glycolysis, the Krebs cycle runs twice for each glucose molecule. Therefore, for one molecule of pyruvate, the cycle runs just once.
The Krebs cycle, also known as the citric acid cycle or TCA cycle, occurs twice for each molecule of glucose that is metabolized. This is because one glucose molecule is broken down into two pyruvate molecules during glycolysis, and each pyruvate enters the Krebs cycle individually. Therefore, for every glucose molecule, the Krebs cycle completes two full turns.
No
Two molecules of NADH are generated after one cycle of the TCA (Krebs) cycle.
Oxaloacetate is regenerated at the end of the cycle.
just one
During the Krebs cycle, one molecule of water (H2O) is produced for each round of the cycle. At the end of the cycle, a total of two molecules of water per molecule of glucose are generated.