Not enough information to answer.
Measure from a point to the corresponding point in the next wave cycle.
it is a range of different radiation with different wave length
To calculate the wave number in a given wave equation, you can use the formula: wave number 2 / wavelength. The wave number represents the spatial frequency of the wave, and is measured in units of reciprocal length, such as radians per meter.
A digital wave length emits a constant signal that quickly declines when out of range (XTS3000 portable radio) An analog wave length gradually declines when out of range (GTX radio)
To find the frequency of a wave, you can use the formula: frequency = speed of the wave / wavelength. The speed of a wave in a specific medium is usually provided, so you can divide that by the wavelength of the wave to calculate the frequency.
The ultrasonic waves generated with the help of a quartz crystal inside the liquid in a container sets up standing wave pattern consisting of nodes and anti-nodes. The nodes are transparent and anti-nodes are opaque to the incident light. In effect the nodes and anti-nodes are acts like grating(a setup of large number of slits of equal distance) similar to that of rulings in diffraction grating. It is called as acoustic grating or aqua grating. Hence, by using the condition for diffraction, we can find the wavelength of ultrasound and thereby the velocity of sound in the liquid medium.
The wavelength of light can be determined using a diffraction grating by measuring the angles of the diffraction pattern produced by the grating. The relationship between the wavelength of light, the distance between the grating lines, and the angles of diffraction can be described by the grating equation. By measuring the angles and using this equation, the wavelength of light can be calculated.
Just ONE property, the wavelength of the light. The colour of visible light depends on its wavelength. These wavelengths range from 700 nm at the red end of the spectrum to 400 nm at the violet end.
it can be from 10 minutes to an hour or longer
The length of a Hz sine wave can be calculated using the formula: length = 1/frequency. For example, for a sine wave of 1 Hz, the length would be 1 second. This formula is derived from the relationship between frequency (number of cycles per second) and the period (duration of one cycle), where period = 1/frequency.
The speed of a wave is determined by the equation: speed = wavelength / period. Without knowing the wavelength, it is not possible to calculate the speed based solely on the wave period.
When you shorten the wave length, you increase the amplitude.