dissolve 1.25g of cycloheximide in 10ml of alcohol or any desired solution. Now the concentration is 125mg / ml.
To prepare a 100 ppm stock solution of nickel nitrate in 250 ml, first calculate the mass of nickel nitrate needed. Nickel nitrate (Ni(NO3)2·6H2O) has a molar mass of approximately 290.79 g/mol. For a 100 ppm solution, you need 100 mg of nickel nitrate in 1 liter, so for 250 ml, you would require 25 mg of nickel nitrate. Weigh out 25 mg of nickel nitrate, dissolve it in a small volume of distilled water, and then dilute the solution to a final volume of 250 ml with distilled water in a volumetric flask.
26.8125 g
To prepare a 250 ml saturated solution of sodium thiosulphate, start by adding sodium thiosulphate (Na2S2O3·5H2O) to a clean container, gradually mixing it with distilled water until no more solid dissolves and the solution reaches saturation. Typically, this requires adding approximately 80 grams of sodium thiosulphate to the water. Stir the mixture thoroughly and allow it to settle for any undissolved solids to settle at the bottom. Finally, transfer the clear solution to a volumetric flask and make up the volume to 250 ml with distilled water.
To prepare a 250 ppm bleach solution, you can dilute a standard household bleach (which typically contains around 5.25-6.15% sodium hypochlorite) in water. First, calculate the volume of bleach needed; for example, mix 1 part bleach with 20 parts water (1:20 dilution) to achieve approximately 250 ppm. Always add bleach to water, not the other way around, to ensure safety, and wear gloves and eye protection while handling. Make sure to label the solution and store it safely.
To prepare a 100 mM NaCl solution, you would need to calculate the molecular weight of NaCl, which is approximately 58.44 g/mol (sodium's atomic weight is 22.99 g/mol and chlorine's is 35.45 g/mol). To make a 100 mM solution, you would need 0.1 moles of NaCl per liter of solution. This would be equivalent to 5.844 grams of NaCl per liter of solution.
simply dissolve 5 ml of salt in 250 ml of warm water
To prepare a 100 ppm stock solution of nickel nitrate in 250 ml, first calculate the mass of nickel nitrate needed. Nickel nitrate (Ni(NO3)2·6H2O) has a molar mass of approximately 290.79 g/mol. For a 100 ppm solution, you need 100 mg of nickel nitrate in 1 liter, so for 250 ml, you would require 25 mg of nickel nitrate. Weigh out 25 mg of nickel nitrate, dissolve it in a small volume of distilled water, and then dilute the solution to a final volume of 250 ml with distilled water in a volumetric flask.
26.8125 g
To make a 3 Molar solution of potassium chloride in 250 milliliters: Calculate the mass of potassium chloride needed using its molar mass. Dissolve this mass of potassium chloride in a small amount of water, then add water to bring the total volume to 250 ml. Stir to ensure complete mixing and dissolve the potassium chloride completely.
To find the volume needed, you can use the formula: M1V1 = M2V2. Here, M1 = 12M (initial concentration), V1 = volume of 12M HCl solution needed, M2 = 0.100M (final concentration), and V2 = 250 mL. Rearranging the formula, V1 = (M2 * V2) / M1 = (0.100M * 250mL) / 12M = 2.08 mL. Therefore, you will need 2.08 mL of the 12M HCl solution to prepare 250 mL of 0.100M solution.
Weight 150 mg sodium chloride and dissolve in 250 mL water.
2.538g in 1000ml. If you are making this for a titration, like for SO2 or thiosulfate, you need also to add iodide: 1. dissolve 8 g potassium iodide in about 250 mL water. 2. add 2.538 g iodine to the water solution. Stir until dissolved. 3. transfer to a 1000 mL volumetric flask and Q.S. to 1000 mL You should standardize vs. thiosulfate or arsenious oxide.
To prepare 250 ml of 0.150 M KNO3 solution, you would need to dilute the stock solution (2.00 M KNO3) with a certain volume of water. You can use the formula for dilution: M1V1 = M2V2, where M1 is the initial concentration (2.00 M), V1 is the initial volume (unknown), M2 is the final concentration (0.150 M), and V2 is the final volume (250 ml). Rearrange the formula to solve for V1: V1 = (M2 * V2) / M1. Substitute the values: V1 = (0.150 M * 250 ml) / 2.00 M = 18.75 ml. You would need 18.75 ml of the stock solution to prepare 250 ml of 0.150 M KNO3 solution.
C7H5N3O6 Molarity = moles of solute/Liters of solution (250 ml = 0.25 Liters ) 0.100 M C7H5N3O6 = X moles/0.25 L = 0.025 moles -------------------------now, 0.025 moles C7H5N3O6 (227.14 grams/1 mole C7H5N3O6) = 5.68 grams TNT ====================a good firecracker!
If you mean 100 ml of 1 mM CuSO5.H2O, then dissolve 0.1 mmole CuSO4.H2O in sufficient water to make a final volume of 100 ml.molar mass CuSO4.5H2O = 250 g/mole 250 mg = 1 mmole 25 mg = 0.1 mmol Dissolve 25 mg in final volume of 100 mls
To prepare a 0.1M citric acid solution, measure out the appropriate amount of citric acid powder using a balance, dissolve it in the desired volume of water (usually in a volumetric flask), and mix well until fully dissolved. Finally, adjust the volume to the desired final volume with water, as needed.
To prepare a 250 ml saturated solution of sodium thiosulphate, start by adding sodium thiosulphate (Na2S2O3·5H2O) to a clean container, gradually mixing it with distilled water until no more solid dissolves and the solution reaches saturation. Typically, this requires adding approximately 80 grams of sodium thiosulphate to the water. Stir the mixture thoroughly and allow it to settle for any undissolved solids to settle at the bottom. Finally, transfer the clear solution to a volumetric flask and make up the volume to 250 ml with distilled water.