Want this question answered?
Be notified when an answer is posted
A solar luminosity is equal to the current luminosity of the Sun, which is 3.839 × 1026 W, or 3.839 × 1033 erg/s.So dividing one solar luminosity with the Suns luminosity gives 1.Also it is a lot easier talking about a luminosity of 1 rather than 3.838 x 1026 W, the same way astronomers use 1 AU to mean 150,000,000km.
Polaris has a luminosity of 2,200 solar luminosities.
A telescope.
Telescopes
Cepheids have a certain relationship between their period, and their absolute luminosity. Thus, their absolute luminosity can be determined. Comparing this with their apparent luminosity allows us to calculate their distance.Cepheids have a certain relationship between their period, and their absolute luminosity. Thus, their absolute luminosity can be determined. Comparing this with their apparent luminosity allows us to calculate their distance.Cepheids have a certain relationship between their period, and their absolute luminosity. Thus, their absolute luminosity can be determined. Comparing this with their apparent luminosity allows us to calculate their distance.Cepheids have a certain relationship between their period, and their absolute luminosity. Thus, their absolute luminosity can be determined. Comparing this with their apparent luminosity allows us to calculate their distance.
The reference that astronomers use to compare the luminosity of other stars is the sun's luminosity. The luminosity is denoted in multiples of the sun's luminosity. For example, the luminosity of the star Sirius is 25 times the luminosity of the sun.
A solar luminosity is equal to the current luminosity of the Sun, which is 3.839 × 1026 W, or 3.839 × 1033 erg/s.So dividing one solar luminosity with the Suns luminosity gives 1.Also it is a lot easier talking about a luminosity of 1 rather than 3.838 x 1026 W, the same way astronomers use 1 AU to mean 150,000,000km.
i really o not understand the significance of the question that is asking
the astronomers use Absolute magnitude
The difference between apparent brightness and luminosity is that apparent brightness means that a star may appear to be bright, but only looks bright because of the relatively closeness a star is to earth. Luminosity is used by astronomers and refers to the power output of a star. Apparent Brightness means a star may appear to be very bright but only look that way because it is relatively close to Earth. Luminosity just refers to the power output of a star.
The difference between apparent brightness and luminosity is that apparent brightness means that a star may appear to be bright, but only looks bright because of the relatively closeness a star is to earth. Luminosity is used by astronomers and refers to the power output of a star. Apparent Brightness means a star may appear to be very bright but only look that way because it is relatively close to Earth. Luminosity just refers to the power output of a star.
I was enthralled by the luminosity of the deep water jellyfish.
Astronomers use infrared light to map the dust in between stars.
They use the bathroom like anyone else in a house or building. They use the restroom, they are astronomers, not astronauts.
Astronomers can use their eyes to study the stars. They can also use various telescopes that either refract, reflect, and detect exotic formations.
telescope
Yes