The bouyant force is equal to the weight of the liquid displaced.
If the buoyant force is less than the weight of an object placed in a fluid, the object will sink. This is because the force pulling the object down (its weight) is greater than the force pushing it up (buoyant force).
Yes, there is a buoyant force acting on you when you are submerged in a fluid. However, whether you float or sink depends on the relationship between the buoyant force and your weight. If the buoyant force is greater than your weight, you will float; if it is less, you will sink.
When the buoyant force on an object is greater than the weight of the object, the object will float. This is because the upward force of buoyancy exceeds the downward force of gravity, allowing the object to stay afloat in a fluid.
Buoyant force is based upon the mass of the water displaced. Therefore, two objects will have the same buoyant force if they have the some volumes.
The force opposing the buoyant force is the force of gravity. Gravity pulls objects downward, creating a force that must be overcome by the buoyant force in order for an object to float in a fluid.
A buoyant force equals the weight of the fluid being displaced
The buoyant force on an object submerged in a liquid is equal to the weight of the displaced liquid. The density of the liquid affects the buoyant force as denser liquids will exert a greater buoyant force on an object compared to less dense liquids.
An object will float if it is less dense than the liquid in which it is placed; if it is denser, it will sink. In terms of forces, if the force of gravity (downward) is greater than the buoyant force (upward), then of course the net force will be downward, and the object will sink.
If the buoyant force equals the object's weight, the object will float at a constant level in the fluid. This is known as neutral buoyancy. The object will neither sink nor rise in the fluid.
The object would float in a given liquid.
The object will sink in the fluid.
The object will sink in the fluid.