A neutron star is the "end of the line" for a giant star that exploded as a supernova. The material in a neutron star is packed so densely that a chunk of it the size of a cigarette package would weigh thousands of tons. It spins rapidly, at a steady rate (they are sometimes called "radio beacon stars").
I suggest you do some reading on both, to get an idea what a neutron star really is, and what a supergiant is. For a start, some differences are: their diameter; their density; the fact that a neutron star no longer produces any energy.
The five main groups of stars are main sequence stars, giant stars, supergiant stars, white dwarf stars, and neutron stars. These groups are classified based on their size, temperature, and stage in their life cycle.
There are various types of stars, such as main sequence stars (like our sun), red giants, white dwarfs, neutron stars, and black holes. These stars differ in size, mass, temperature, and lifespan. They are classified based on their characteristics and the stage of their evolution.
When compared to the other stars, the Red Giant Star are very minute. There are other stars that are very large by far as compared to the Red giant stars.
A subgiant star is larger than a neutron star. Neutron stars are incredibly dense and compact remnants of massive stars, while subgiant stars are in a transitional phase between main sequence and red giant stages, typically larger and more diffuse than neutron stars.
Stars can be classified based on their size, temperature, and color. Common types include main sequence stars like the Sun, giant stars, and supergiant stars. Other types include white dwarfs, neutron stars, and black holes.
I suggest you do some reading on both, to get an idea what a neutron star really is, and what a supergiant is. For a start, some differences are: their diameter; their density; the fact that a neutron star no longer produces any energy.
Yes, a Red Giant star is typically much larger than a neutron star. Red Giants are evolved massive stars that have expanded and cooled, while neutron stars are extremely dense remnants of supernova explosions that are only about 10-20 kilometers in diameter.
The oldest stars are now mostly either white dwarfs or neutron stars. A few of the largest may be black holes.
Actually if a star is medium or low mass is will run out of fuel and turn into a red giant, once the stars atmosphere slowly drifts away and the core is remaining it will eventually become a white dwarf For more massive stars it will turn in to a super giant the will cause a supernova, after the supernova the star can either a black hole or a neutron star
Stars may collapse to such a degree, perhaps after a supernova, that, in the core, electrons are squashed into the nucleus, reacting with protons to form neutrons. A star of this collapsed state is called neutron stars.
Some massive stars will become neutron stars. When massive stars die they will either become neutron stars or black holes depending on how much mass is left behind.