Fusion is a process in which the nuclei of two atoms combine to form a larger nucleus, while fission during fusion a small fraction of the reactant mass is converted into energy.
While not the only possible fusion reaction, the most commonly known is the fusion of hydrogen to create helium. The product is stable. In contrast, when fission of uranium or plutonium takes place, the resultant nuclei are neutron heavy and therefore will almost certainly be radioactive.
Most (but not all) fusion products are non-radioactive. Virtually all fission products are strongly radioactive beta or gamma emitters.
Fusion is a process in which the nuclei of two atoms combine to form a larger nucleus, while fission during fusion a small fraction of the reactant mass is converted into energy. While not the only possible fusion reaction, the most commonly known is the fusion of hydrogen to create helium. The product is stable. In contrast, when fission of uranium or plutonium takes place, the resultant nuclei are neutron heavy and therefore will almost certainly be radioactive.
Fusion is a process in which the nuclei of two atoms combine to form a larger nucleus, while fission during fusion a small fraction of the reactant mass is converted into energy. While not the only possible fusion reaction, the most commonly known is the fusion of hydrogen to create helium. The product is stable. In contrast, when fission of uranium or plutonium takes place, the resultant nuclei are neutron heavy and therefore will almost certainly be radioactive.
One thing that makes fusion products different from fission products obviously is the fact that fusion products are heavier than the original two nuclei and fission products are lighter than the original nucleus
fission..sup
fission
Fusion is a process in which the nuclei of two atoms combine to form a larger nucleus, while fission during fusion a small fraction of the reactant mass is converted into energy. While not the only possible fusion reaction, the most commonly known is the fusion of hydrogen to create helium. The product is stable. In contrast, when fission of uranium or plutonium takes place, the resultant nuclei are neutron heavy and therefore will almost certainly be radioactive.
Fission and fusion
explain how a fusion reactor would be similar to a fission reaction
Not fusion, but a fission reaction.
Nuclear fusion doesn't produce energy.
Fusion: smaller atoms are made into bigger atoms (2 Deuterium atoms -> 1 Helium atom) Fission: larger atoms are made into smaller atoms (1 Uranium 235 (Z=92) + 1 neutron -> 1 Krypton 92 (Z=36) + 1 Barium 141 (Z=56))