Use the equation
Moles(m) = mass(g) / Mr (Relative Molecular Mass).
To calculate the Mr , refer to the Periodic Table, for Atomic Masses.
For H2SO4
We have
H x 2 = 1 x 2 = 2 ( 1 is the Atomic Mass of H )
S x 1 = 32 x 1 = 32 ( 32 is the atomic mass of S).
O x 4 = 16 x 4 = 64 (16 is the atomic mass of O).
Adding
2 + 32 + 64 = 98 the Mr of H2SO4
Substituting into the eq'n above
1 mole = mass(g) / 98
Algebraic rearrangement
mass(g) = 1 mole X 98(Mr)
mass(g) = 98 grams. is the mass of 1 mole of H2SO4 .
To completely neutralize 100ml of 1M H2SO4, you would need an equal number of moles of NaCl. H2SO4 is a diprotic acid, so it will require 2 moles of NaCl to neutralize 1 mole of H2SO4. Therefore, you would need 2 moles of NaCl for every mole of H2SO4. With a 1M solution of H2SO4 in 100ml, you have 0.1 moles of H2SO4. Therefore, you would need 0.2 moles of NaCl. The molar mass of NaCl is approximately 58.44g/mol, so you would need approximately 11.7 grams of NaCl to completely neutralize the 1M H2SO4 solution.
To prepare 1M H2SO4 solution, you would need to dilute concentrated sulfuric acid (approximately 18M) by adding the appropriate amount of water. To make 1L of 1M H2SO4 solution, you would mix approximately 55.5 mL of concentrated sulfuric acid with about 944.5 mL of water in a volumetric flask while taking proper safety precautions.
To completely neutralize 100 ml of 1M H2SO4, you would need an equal number of moles of NaCl. H2SO4 is a diprotic acid, so you need 2 moles of NaCl for each mole of H2SO4. Therefore, you would need 2 moles of NaCl, which is equal to 117 grams (2 x molar mass of NaCl) to neutralize 100 ml of 1M H2SO4.
To calculate the moles of H2SO4 in a titration, you can use the formula: moles Molarity x Volume. First, determine the molarity of the H2SO4 solution. Then, measure the volume of the solution used in the titration. Multiply the molarity by the volume to find the moles of H2SO4.
If water is present in the volumetric flask when transferring the H2SO4 solution from the pipette, the final concentration of H2SO4 will be diluted. This is because the water will mix with the H2SO4 solution, increasing the total volume in the flask without adding more H2SO4 molecules. As a result, the concentration of H2SO4 will be lower than intended.
To completely neutralize 100ml of 1M H2SO4, you would need an equal number of moles of NaCl. H2SO4 is a diprotic acid, so it will require 2 moles of NaCl to neutralize 1 mole of H2SO4. Therefore, you would need 2 moles of NaCl for every mole of H2SO4. With a 1M solution of H2SO4 in 100ml, you have 0.1 moles of H2SO4. Therefore, you would need 0.2 moles of NaCl. The molar mass of NaCl is approximately 58.44g/mol, so you would need approximately 11.7 grams of NaCl to completely neutralize the 1M H2SO4 solution.
To prepare 1M H2SO4 solution, you would need to dilute concentrated sulfuric acid (approximately 18M) by adding the appropriate amount of water. To make 1L of 1M H2SO4 solution, you would mix approximately 55.5 mL of concentrated sulfuric acid with about 944.5 mL of water in a volumetric flask while taking proper safety precautions.
To completely neutralize 100 ml of 1M H2SO4, you would need an equal number of moles of NaCl. H2SO4 is a diprotic acid, so you need 2 moles of NaCl for each mole of H2SO4. Therefore, you would need 2 moles of NaCl, which is equal to 117 grams (2 x molar mass of NaCl) to neutralize 100 ml of 1M H2SO4.
98
To calculate the moles of H2SO4 in a titration, you can use the formula: moles Molarity x Volume. First, determine the molarity of the H2SO4 solution. Then, measure the volume of the solution used in the titration. Multiply the molarity by the volume to find the moles of H2SO4.
If water is present in the volumetric flask when transferring the H2SO4 solution from the pipette, the final concentration of H2SO4 will be diluted. This is because the water will mix with the H2SO4 solution, increasing the total volume in the flask without adding more H2SO4 molecules. As a result, the concentration of H2SO4 will be lower than intended.
To find the concentration of H2SO4, first calculate the number of moles of NaOH using the formula: moles = concentration x volume (in dm^3). Then, use the balanced equation to determine the mole ratio between NaOH and H2SO4. Finally, calculate the concentration of H2SO4 by dividing the moles of H2SO4 by the volume of H2SO4 used.
Remember M1V1=M2V2, where M is molarity and V is volume. M1/M2=V2/V1, 10/1=v2/v1, For diluting the acid, we can add acid to water. So, assuming that 10M H2SO4 is having 1ml of water, we should add 1M of H2So4 to 10ml of water.
To calculate the percent of a 5 N H2SO4 solution, you need to know the molarity (moles of solute per liter of solution) and the molecular weight of the solute. Once you have that information, you can use the formula: % = (molarity x equivalent weight) / 10. If you provide the molecular weight of H2SO4, I can help you calculate the percent.
To standardize 1N H2SO4 with KHP, you would first prepare a solution of KHP of known concentration. Then, titrate the KHP solution with the 1N H2SO4 solution until the endpoint is reached. The volume of H2SO4 used in the titration can then be used to calculate the exact concentration of the H2SO4 solution.
To find the mass of 3.60 moles of H2SO4, you first need to calculate the molar mass of H2SO4. The molar mass of H2SO4 is 98.08 g/mol. Multiply the molar mass by the number of moles to get the mass: 3.60 moles * 98.08 g/mol = 353.088 grams. Therefore, the mass of 3.60 moles of H2SO4 is 353.088 grams.
To prepare 0.02N H2SO4 from 0.1N H2SO4, you can dilute the 0.1N H2SO4 by adding a calculated amount of water. To calculate the dilution factor, you can use the formula: C1V1 = C2V2, where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration (0.02N), and you can solve for V2 to find the volume of the 0.1N H2SO4 to be diluted with water to get 0.02N H2SO4.