The resultant doesn't tell you anything about the component forces.
Often, you can't even tell whether there areany component forces,
because the resultant behaves just as if it were the one and only
single force present.
The resultant force for 6N is simply 6N. This is because there is only one force acting on the object, and that force has a magnitude of 6N.
If the two vectors are directly opposite each other, then subtract the smaller one from the larger one and that will be your resultant force. For example, if the force downwards is 5 N and the force upwards is 2 N, the resultant force is 3 N downwards. If the one or both of the two vectors are angled, you need to replace the angled vectors with two right-angled vectors and then add those to create the resultant vectors.
A net resultant force.
To find the resultant force you need to find both the x and y component of the resultant force. Once you have that, you can use the Pythagorean theorem to find the resultant force.
The acceleration of a body is inversely proportional to its mass and directly proportional to the resultant force acting on it, as described by Newton's second law of motion: F = ma. This means that a lighter body will accelerate more for a given force compared to a heavier body.
The angle of the resultant force can be calculated using trigonometry principles such as the Pythagorean theorem and inverse trigonometric functions. Given the magnitudes of the two component forces, you can determine the angle using the formula: angle = arctan(opposite/adjacent). This will help you find the direction in which the resultant force is acting.
The magnitude of the resultant force in the case of the concurrent forces in equilibrium.
A 150 pound resultant force
The resultant is a trigonometric function, usually using the Law of Cosines in two dimensional solution by vector resolution, of two or more known forces while equilibrant is equal in magnitude to the resultant, it is in the opposite direction because it balances the resultant.Therefore, the equilibrant is the negative of the resultant.
a resultant vector not only the resultant of two or three vector. it is the resultant direction of two or many vectors.(let us push an object with same force in opposite direction the resultant is zero and if we push in same direction the force will double.if we pull a object with same force in x and y direction the resultant force in 45 degrees to x axis)
Resultant force is a system of forces in the single force equivalent to the system, whilst equilibrant force is a force capable of balancing another force to achieve equilibrium.
the head to tail rule