The actual mechanical advantage is usually less, due to losses.
The ideal mechanical advantage is based on the geometric relationships of a machine's components and assumes no energy losses, while the actual mechanical advantage accounts for friction, inefficiencies, and other factors that can reduce the output compared to the input force. In reality, the actual mechanical advantage is always less than the ideal mechanical advantage due to these energy losses.
If a machine was 100 percent efficient, the AMA would be equal to the IMA. This is because in an ideal scenario where the machine loses no energy to friction or other factors, the AMA (actual mechanical advantage) would be the same as the IMA (ideal mechanical advantage).
IMA- Ideal mechanical advantageAMA- Actual mechanical advantage
Ideal mechanical advantage is what could be obtained without the effects of gravity and friction lowering the efficiency of the machine. The actual mechanical advantage is what can actually be obtained by the machine.
The actual mechanical advantage of a machine is usually less than its ideal mechanical advantage due to factors like friction, energy loss, and imperfections within the machine. These losses reduce the efficiency of the machine in transferring input force to the output force. Ideal mechanical advantage is based on the design and geometry of the machine, while actual mechanical advantage accounts for real-world limitations and performance.
This is because the actual mechanical advantage is the actual calculation found after dividing the effort force by the output force. Ideal mechanical advantage is what many people would call an estimate. When estimating mechanical advantage, the numbers are always rounded. This makes actual mechanical advantage less. Sources: Science teacher
Actual Mechanical Advantage is the ratio of Force outputed to Force inputed. (AMA=Fo/Fi) Similarly, IMA (Ideal Mechanical Advantage) = di/do
I haven't gotten around to repeating it yet. I've been so busy, had so much homework, the dog ate it, etc.
Mechanical Advantage: F(out)/ F(in) Actual Mechanical Advantage is the ratio of Force outputed to Force inputed. (AMA=Fo/Fi) Similarly, IMA (Ideal Mechanical Advantage) = di/do
Mechanical advantage is determined by physical measurement of the input and output forces and takes into account energy loss due to deflection, friction, and wear. The ideal mechanical advantage, meanwhile, is the mechanical advantage of a device with the assumption that its components do not flex, there is no friction, and there is no wear.
As the height of an inclined plane increases, both the actual and ideal mechanical advantage also increase. This is because the mechanical advantage of an inclined plane is directly related to its slope, so a steeper incline will provide greater mechanical advantage compared to a shallower one.
Mechanical advantage is the ratio of the output force produced by a machine to the input force applied to it. Ideal mechanical advantage is the theoretical ratio of the output force to the input force, assuming no energy losses due to friction or other factors. In reality, actual mechanical advantage is always less than ideal mechanical advantage due to factors like friction and inefficiencies in the machine.