I haven't gotten around to repeating it yet. I've been so busy,
had so much homework, the dog ate it, etc.
Architect is higher Profession as compare to Mechanical Engineer.
no , not yet . and it takes some time to recover. compare to computer science it is best to choose mechanical or civil or chemical
we can put more load on the vehicle which is fitted with Bogie suspension compare toother suspension systems.
Backtracking algorithmn finds minimal path among the all.The main advantage of back tracking algorithmn as compare with greedy is to find minimal distance.In greedy ,it does.t know the optimal solution.It is used in Google earth.
I don't understand the question. It would appear that you wish to compare a centrifugal compressor and an axial flow compressor operating at the same speed and delivering equal flow rates. What is the process fluid? What is the question? Is the "equal air flow" the mass flow rate? At what pressure differential would you like to consider these machines? What is it that you wish to compare? Is it weight, frontal area, mechanical efficiency, overall diameter, length, delivery temperature, input power or what?
The actual mechanical advantage is usually less, due to losses.
Input and output (of energy)
The ideal mechanical advantage is based on the geometric relationships of a machine's components and assumes no energy losses, while the actual mechanical advantage accounts for friction, inefficiencies, and other factors that can reduce the output compared to the input force. In reality, the actual mechanical advantage is always less than the ideal mechanical advantage due to these energy losses.
To measure the mechanical advantage of a bicycle, you would compare the input force applied by the rider to the output force produced at the wheels. The mechanical advantage is calculated by dividing the output force by the input force. In the case of a bicycle, the mechanical advantage helps determine how efficiently the rider's pedaling translates into forward motion.
If a machine was 100 percent efficient, the AMA would be equal to the IMA. This is because in an ideal scenario where the machine loses no energy to friction or other factors, the AMA (actual mechanical advantage) would be the same as the IMA (ideal mechanical advantage).
The actual mechanical advantage is the measured force output divided by the measured force input, while the theoretical mechanical advantage is calculated based on the quotient of the load distance and effort distance. Comparing the two allows us to evaluate the efficiency and effectiveness of the machine in translating input force into output force. Discrepancies between the actual and theoretical mechanical advantages signify losses due to factors like friction, inertia, or other inefficiencies in the system.
Theoretical mechanical advantage is the ratio of the input force to the output force without considering friction, while actual mechanical advantage includes frictional losses in the machine. If a machine is 100 percent efficient, there will be no frictional losses, so the theoretical and actual mechanical advantages will be the same, resulting in a 1:1 ratio of input force to output force.
You have to have either done two experiments or read two experiments or read one experiment and do the other in order to compare and contrast an experiment.
Mechanical advantage measures the ratio of output force to input force, showing how much a machine amplifies force. Efficiency, on the other hand, measures how well a machine uses energy and is the ratio of output work to input work. A high mechanical advantage means a machine can achieve a large force output, while high efficiency means a machine minimizes wasted energy during its operation.
Standardization
A control experiment provides a benchmark against which to compare the results of the main experiment. For example, to know if heating a material changes its resistance, you must be able to compare the results of the heated experiment to a copy in which the material was left unheated.
Control