pay $500000000000000 if you want to know the answer
band diagram of p type semiconductor
A narrow-band semiconductor is a type of semiconductor material with a small energy gap between its valence band and conduction band. This small energy gap allows for electrons to move easily between the bands, making it suitable for applications such as optoelectronics and telecommunications.
construction and working of semiconductor laser
In semiconductor materials, the valence band is the highest energy band occupied by electrons, while the conduction band is the next higher energy band that electrons can move into to conduct electricity. The energy gap between the valence and conduction bands determines the conductivity of the semiconductor.
The Si band structure is important in the study of semiconductor materials because it helps determine the electrical properties of silicon, which is a widely used semiconductor material in electronic devices. The band structure of silicon influences its conductivity and other characteristics, making it crucial for understanding and designing semiconductor devices.
Narrow-band semiconductor refers to the semiconductor materials with band gap that is relatively smaller than silicon. This is commonly used as thermo-electric or infrared detectors.
If an acceptor atom is placed in a pure semiconductor, it will accept one or more electrons from the valence band of the semiconductor. This will permit positive holes in the conduction band to carry electrical current - the overall result is that the material will behave as a p-type semiconductor.
When a semiconductor is degenerate, it means that its electrons have filled up all available energy levels in the conduction band. This leads to a high electron concentration and makes the semiconductor behave more like a metal in terms of its electrical properties. This can result in higher conductivity and different behavior in electronic devices.
The silicon band structure is important in semiconductor physics because it determines the electrical properties of silicon, which is a widely used material in electronic devices. The band structure of silicon affects its conductivity and allows it to be used in the creation of transistors and other semiconductor components that are essential for modern technology.
Energy band theory is the theoretical framework used to explain the electronic structure of solids in terms of energy bands. It describes how electrons in a solid can only occupy certain energy levels, forming bands of allowed energy states. These bands can be either filled with electrons (valence band) or empty (conduction band), with a band gap separating them.
No such thing as the big band theory
The electronic energy band of a http://www.answers.com/topic/crystalline solid which is partially occupied by electrons.