answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: How does changing the distance from the fulcrum to load affect the effort needed to lift the load?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the difference between effort distance and load distance?

chickjenww


How do you measure the effort distance in a lever?

Measure the distance from the fulcrum to the effort?


What is the MA of a first class lever?

It is (distance from fulcrum to effort)/(distance from fulcrum to load).


What is the relationship between distance from the fulcrum and the mechanical advantage of a first class lever?

The mechanical advantage of a First Class lever is Distance of the effort from the fulcrum/Distance of the load from the fulcrum


When is the effort force decreased in a first class lever?

The effort-to-load force in a first class lever is decreased when the distance between the effort and the fulcrum is less than the distance between the fulcrum and the load.


How does the position of the fulcrum and the location of the load affect the amount of effort force you must exert to lift the load?

To do this you first have to calculate your ideal mechanical advantage (IMA). The IMA is equal to the effort distance (the distance from the fulcrum to where you will apply the effort) divided by the load distance (the distance from the fulcrum to the load). You can then set your IMA equal to your acutal mechanical advatage (AMA) which assumes 100% efficiency. The AMA is equal to the load force (the weight of what you are lifting) divided by the effort force (the # you are looking for). So, for example, if your IMA is 5 and your load force is 500 lbs: 5=500/effort force. Therefore the effort force would be 100 pounds.


Keeping the location of the effort constant Will the effort increase if the load is moved farther away from the fulcrum?

The magnitude of the effort is controlled by you, not by the distance of the load from the fulcrum. Moving the load farther away from the fulcrum has no effect on the effort. But if you want to leave the effort where it is and still lift the load with the lever, then you're going to have to increase the effort.


Relationship between position of fulcrum and effort required to lift load?

A relationship between two of it are when load come closer to fulcrum, you need more effort to use. But if load go far away from the fulcrum, you need less effort to use. A relationship between two of it are when load come closer to fulcrum, you need more effort to use. But if load go far away from the fulcrum, you need less effort to use.


What does the machanical advantage of a first class lever depend apon?

The distance from the fulcrum to the effort.


What does the machanical advantage of a first-class lever depend apon?

The distance from the fulcrum to the effort.


How do first class levers work?

distance from fulcrum to point of effort is de distance from fulcrum to point of resistance is dr Force applied is called the effort, Fe The weight of the object to resistance, Fr Ignoring the weight of the lever itself ... IDEALLY Fede = Frdr Effort ---- fulcrum ---- resistance (not necessarily equal lengths) In this illustration, effort pushes down on left, resistance is lifted up on right.


What is the relationship between the amount of effort needed to lift the load and the distance of load from the fulcrum?

confusing