answersLogoWhite

0

To do this you first have to calculate your ideal mechanical advantage (IMA). The IMA is equal to the effort distance (the distance from the fulcrum to where you will apply the effort) divided by the load distance (the distance from the fulcrum to the load). You can then set your IMA equal to your acutal mechanical advatage (AMA) which assumes 100% efficiency. The AMA is equal to the load force (the weight of what you are lifting) divided by the effort force (the # you are looking for). So, for example, if your IMA is 5 and your load force is 500 lbs: 5=500/effort force. Therefore the effort force would be 100 pounds.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about General Science

How can a spill of a solution affect the experiment?

By not having the right amount. jamaul


What are the 3 classes of levers?

Levers are classified into three types (first-class, second-class, and third-class) depending on the relative position of the fulcrum (pivot point), the point of applied (input) force, and the location of the load (output force). In a first-class lever, the fulcrum is between the input force and the output force, and the load is moved in the opposite direction of the applied force. Placing the fulcrum closer to the load gives an advantage of force (less force needed to move the load a shorter distance), while a fulcrum closer to the point of applied force gives an advantage of distance (the load is moved a greater distance but more applied force is needed). First-class levers include a crowbar, using a hammer's claw end to remove a nail, and a pair of scissors. In a second-class lever, the load is between the fulcrum and the point of applied force, so both forces move in the same direction. Less force is needed to move the load, but the load does not move as far as the direction over which the input force must be applied. Examples include the wheelbarrow, a bottle opener, and a door on its hinges. In a third-class lever, the input force is applied between the fulcrum and the load, and both move in the same direction. The amount of applied force is always greater than the output force of the load, but the load is moved a greater distance than that over which the input force is applied. Examples include a hammer driving a nail and the forearm of a person swinging a baseball bat. If you want to find out any more, go to: http://www.technologystudent.com/forcmom/lever1.htm :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :)


Does temperature affect the amount of substance dissolved in a saturated solution?

Yes temperature affects the amount of substance dissolved in a saturated solution.


How does the diameter of wire coil affect the amount of electricity?

The diameter of the coil affects the amount of electricity as longer the coil longer the electricity.


The rate at which an object changes position is called what?

A change in position in a certain amount of time is called motion.

Related Questions

How does the position of a fulcrum affect the load?

The position of the fulcrum affects the amount of force required to lift a load. Moving the fulcrum closer to the load reduces the force needed, while moving it farther away increases the force required. Placing the fulcrum at different distances changes the mechanical advantage of the lever system.


What is a fix point at which a lever pivots?

A fixed point at which a lever pivots is called a fulcrum. The location of the fulcrum determines how the lever will move and can affect the amount of mechanical advantage gained when using the lever.


What two things does the location of the fulcrum and load affect?

The location of the fulcrum and load affects the amount of effort needed to lift the load and the distance the load can be moved. Placing the fulcrum closer to the load reduces the effort needed but limits how far the load can be moved, while placing the fulcrum closer to the effort increases the distance the load can be moved but requires more effort.


Does the position of the load for a class-2 lever effect the effort?

Yes, the position of the load on a class-2 lever does affect the amount of effort required. Moving the load closer to the fulcrum reduces the effort needed, while moving it farther away from the fulcrum increases the effort required.


What fulcrum location required the least amount of effort force to lift the load?

The fulcrum location that requires the least amount of effort force to lift a load is at a distance from the load that is closer to the load than to the applied force. This type of lever system is known as a Class 1 lever, where the fulcrum is positioned between the load and the applied force.


Is it true or false that as the position of the fulcrum changes the amount of force needed to move a box remains the same?

The force at the box would remain the same is true.


What factors affect population growth?

Location, amount of people, town.


What is the relationship between the amount of effort required to lift the load and the distance the load is from the fulcrum?

The amount of effort required to lift a load is inversely proportional to the distance the load is from the fulcrum. This means that the closer the load is to the fulcrum, the more effort is needed to lift it, and vice versa when the load is farther from the fulcrum.


Why mass of a body do not change with location?

The mass of a body remains constant regardless of its location because mass is an intrinsic property of the body. It is a measure of the amount of matter in the body, which does not change based on its position in space. The gravitational force acting on the body may vary with location, but this does not affect the body's mass.


What is the point where s lever turns?

The point where a lever turns is called the fulcrum. It is the fixed point around which the lever pivots when a force is applied to it. The location of the fulcrum determines how the lever functions and the mechanical advantage it provides.


What will affect the amount of gravitational potential energy?

The mass, height and the force of gravity at the location.


What is the relationship between the amount of effort needed to lift the load and the distance of load from the fulcrum?

The amount of effort needed to lift a load decreases as the distance of the load from the fulcrum increases. This is because a longer distance from the fulcrum provides a mechanical advantage, making it easier to lift the load.