Heat capacity is NOT a path function. It is a STATE function. It depends on the phase of the material, the temperature and the pressure. Usually heat capacity is known at some particular condition and then a calculation is required to estimate it at the condition of interest. Performing these calculations should always result in the same final value no matter the path you took to get to the value - hence it is a STATE function rather than PATH. Path functions would be things like WORK and HEAT (for which the state function "heat capacity" might be used in the calculations)
Well, honey, heat capacity is a path function because it depends on the specific process or path taken to reach a certain state. It's all about how much heat is needed to change the temperature of a substance, and that can vary depending on the route you take. So, in a nutshell, heat capacity doesn't give a damn about the destination, it's all about the journey.
A path function in thermodynamics is a function whose value depends on the path taken to reach a particular state. Examples include work and heat. These functions are not solely determined by the initial and final states but also by the process followed.
Path function: Their magnitudes depend on the path followed during a process as well as the end states. Work (W), heat (Q) are path functions.The cyclic integral of a path function is non-zero. work and heat are path functions.Point Function: They depend on the state only, and not on how a system reaches that state. All properties are point functions.The cyclic integral of a point function is zero. properties are point functions, (ie pressure,volume,temperature and entropy).
Heat is not a state function because it depends on the path taken to reach a particular state. The amount of heat transferred during a process can vary depending on the specific conditions under which the process occurs. As a result, heat is considered a path-dependent quantity rather than a state function.
A point function is a function whose value depends only on the state of a system at a single point, regardless of the path taken to reach that state. Examples include pressure, temperature, and density. In contrast, a path function depends on the path taken to reach a particular state and not just the initial and final states of a system. Examples include work and heat.
state function did not depend on the path , it depends on the initial and final point of the system where as path function depends on the path of the reaction.
a function whose magnitude depends on the path followed by the function and on the end points.
Not really, if you're referring to heat transfer, then the heat will use the path of least resistance. So the heat doesn't rely on the path as much as it does on the material that the heat must travel through.
irstly from Thermodynamics point of view, we need to call heat as Heat transfer. Both Heat and work transfer are energies in transit. They come into picture only when a process is taking place. Also the quantity of heat transfer depends on the type of process or path followed. So Heat Transfer is a path function but not a property(which is a point function). 📷 In case of properties, the difference in properties (here P2-P1 or V2- V1)between state 1 and state 2 always remains same irrespective of the path followed. So properties are called Exact Differentials or Point functions. But in case of Heat transfer and Work transfer, the quantity of heat and work transfer between state 1 and state 2 depends on the path followed. Therefore heat and work transfer are not exact differentials,they are Inexact differentials or path functions.
what is heat a thermodynamic function
Its a path function......but DISPLACEMENT is a state function.Distance depends on the path we followed from one state to another but displacement is a straight distance so it depends upon the states.
The function of a switch is to open or close a path for electricity.