answersLogoWhite

0

a function whose magnitude depends on the path followed by the function and on the end points.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Natural Sciences

What is point function in thermodynamics?

A path function is one where it the value of the function depends on the path you took from the initial and final state. Work and Heat are path functions. A "point function" is one that only has points as values rather than being continuous. The only point functions in thermodynamics are where the thermodynamic conditions are fully constrained - such as pure component triple points and critical points. At the triple point vapor, liquid, and solid can coexist in equilibrium. That only happens at a single temperature and pressure. Likewise, the critical point only occurs at the critical temperature and pressure. If you have a mixture, you get a continuous function over a composition range rather than a single point. If by "point function" the questioner meant to refer to those functions/properties where the value only depends on the point where you start and the point where you end, the correct name is "state function". In thermodynamics changes in internal energy, enthalpy, Helmoltz energy, and Gibbs free energy depend only on starting and ending conditions and are State Functions.


Which law states that internal energy is function of Temperature?

The First Law of Thermodynamics states that the internal energy of a system is a function of temperature. It describes the relationship between heat transfer, work done, and changes in internal energy. It is a fundamental principle in the field of thermodynamics.


Does entropy depend on its path?

No, entropy is a state function, which means it depends only on the initial and final states of a system and not the path taken to reach those states.


What is the value of internal energy in a cyclic process in thermodynamics?

Since internal energy is a state function and a cyclic process always returns to the same state (that's how you define a cyclic process), the value of the the internal energy will remain constant. That is not to say that it doesn't change along the cyclic path during the process - just that it always returns to the same value when the cycle is complete.


Is thermodynamics the same as physical chemistry?

Thermodynamics is considered a part of physical chemistry.

Related Questions

What is a state function and how does it differ from other types of functions in thermodynamics?

A state function in thermodynamics is a property that depends only on the current state of a system, such as temperature, pressure, or volume. It does not depend on the path taken to reach that state. This differs from other types of functions in thermodynamics, such as path functions, which depend on the specific process or path taken to reach a particular state.


Is entropy path dependent in thermodynamics?

No, entropy is not path dependent in thermodynamics.


What is the definition of a state function and how does it differ from other types of functions in thermodynamics?

A state function in thermodynamics is a property that depends only on the current state of a system, such as temperature, pressure, or volume. It does not depend on the path taken to reach that state. This is different from path functions, which depend on the specific process or path taken to reach a particular state.


What is a state function and how is it best described in thermodynamics?

A state function is a property of a system that depends only on its current state, not on how it got there. In thermodynamics, it is best described as a function that is independent of the path taken to reach a particular state. Examples include temperature, pressure, and internal energy.


Is pressure a state function in thermodynamics?

No, pressure is not a state function in thermodynamics.


Is work a state function in thermodynamics?

No, work is not a state function in thermodynamics.


Define point function and path function?

A point function is a function whose value depends only on the state of a system at a single point, regardless of the path taken to reach that state. Examples include pressure, temperature, and density. In contrast, a path function depends on the path taken to reach a particular state and not just the initial and final states of a system. Examples include work and heat.


Is volume a state function?

Yes, volume is a state function in thermodynamics, meaning it depends only on the initial and final states of a system and not on the path taken to reach those states.


What is the significance of a state function in thermodynamics and how does it differ from other types of functions in the context of energy and properties of a system?

In thermodynamics, a state function is important because it only depends on the current state of a system, not how it got there. This means that the value of a state function is independent of the path taken to reach that state. This is different from other types of functions, like path functions, which do depend on the specific path taken. State functions are useful for describing the energy and properties of a system because they provide a consistent and reliable way to analyze and predict changes in the system.


What is difference between path function and point function in thermodyanaMICS?

Path function: Their magnitudes depend on the path followed during a process as well as the end states. Work (W), heat (Q) are path functions.The cyclic integral of a path function is non-zero. work and heat are path functions.Point Function: They depend on the state only, and not on how a system reaches that state. All properties are point functions.The cyclic integral of a point function is zero. properties are point functions, (ie pressure,volume,temperature and entropy).


What is the difference between path function and state function?

state function did not depend on the path , it depends on the initial and final point of the system where as path function depends on the path of the reaction.


What are state functions in thermodynamics and how do they differ from path functions?

State functions in thermodynamics are properties that depend only on the current state of a system, such as temperature, pressure, and internal energy. They do not depend on the path taken to reach that state. Path functions, on the other hand, depend on the specific path taken to reach a particular state, such as work and heat.